Skip to main content
Log in

Local Bubble Characteristics in a Side-Blown Vortex Smelting Reduction Reactor

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In bath smelting, the study of gas–liquid interaction and the local bubble characteristics is very important. Physical simulation is used to study the effect of the nozzle diameter, the number of lances, total gas flow rate, and the position of the measurement on the local bubble characteristics and gas–liquid interaction in the side-blown vortex smelting reduction reactor. The results show that as the total gas flow rate increases, the gas distribution range will expand, the location of the maximum gas holdup will be away from the lances. As the nozzle diameter decreases, the location of the maximum gas holdup will be away from the lances. When 6 lances are used, a bubble band with uniform bubble velocity distribution is generated in the jet control area. When using 3 lances, the uniformity of the bubble velocity distribution is worse than that when 6 lances are used, but the bubble velocity will be larger. As the total gas flow rate increases, the mean specific interfacial area in the reactor increases. When the total gas flow rate is high, using 3 lances will produce more interfacial area than using 6 lances. The empirical correlation of the local specific interfacial area is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a i :

Local specific interfacial area (mm−1)

a i, mean :

Mean specific interfacial area (mm−1)

C :

Constant in the transformation from CLD to BSD

Ca :

Interfacial tension number

D :

Vessel diameter (m)

d b :

Bubble diameter (mm)

d n :

Nozzle diameter (mm)

dt :

Bubble lag time (s)

d 32 :

Bubbles Sauter mean diameter (mm)

\(\overline{{d_{32} }}\) :

Sauter mean diameter obtained by taking the bubbles measured at all measuring points as samples (mm)

Eo :

Eötvös number

Fr’ :

Modified Froude number

g :

Acceleration of gravity (m s−2)

H :

Vessel height (m)

H L :

Lance installation height (m)

H l :

Liquid depth (m)

I :

Number of bubbles counted during the sampling time

J :

Number of the bubble groups

K :

Number of measuring points

l :

Distance between the two tips of the probe (mm)

Mo :

Morton number

n :

Number of lances

P b(r b), P b(d b):

Bubble size distribution

P c(y c):

Bubble chord length distribution

\(\widetilde{P}_{{{\text{b, }}j}} \left( {r_{{\text{b}}} } \right)\) :

Correction term in the transformation from CLD to BSD

\(P_{{\text{c}}}^{^{\prime}} \left( {y_{{\text{c}}} } \right)\) :

Derivative of Pc(yc)

Q :

Total volume flow rate of gas (Nm3 h−1)

R :

Vessel radius (m)

Re :

Reynolds number

r :

Distance between the measuring point and reactor center (m)

r b :

Bubble radius (mm)

S L :

Lance submersion depth (m)

t :

Sampling time (s)

Δt :

Bubble duration time (s)

u b :

Local bubble mean velocity, (m s−1)

u b, i :

Velocity of a single bubble (m s−1)

u g :

Apparent velocity of the gas at the nozzle outlet (m s−1)

V a, V b :

Level voltage (V)

y c :

Bubble chord length (mm)

\(\overline{{y_{{\text{c}}} }}\) :

Bubble mean chord length (mm)

\(\overline{{y_{{{\text{c, }}j}} }}\), A j , w j :

Fitting parameters for Gaussian function

z :

Measuring plane (m)

α :

Tangential angles of lance (deg)

β :

Vertical angles of lance (deg)

γ j :

Area share of each Gaussian fit function in the original CLD function after dividing into J groups.

ε g :

Local gas holdup

\(\overline{{\varepsilon_{{\text{g}}} }}\) :

Mean gas holdup of all measuring points

θ :

The angle between the measuring point and the Lance installation position (deg)

λ :

Bubble shape factor

μ :

Dynamic viscosity (Pa s)

μ g :

Gas viscosity (Pa s)

μ l :

Liquid viscosity (Pa s)

ρ :

Density (kg m−3)

ρ g :

Gas density (kg m−3)

ρ l :

Liquid density (kg m−3)

σ :

Surface tension (N m−1)

a:

Tip of the probe

b:

Tip of the probe; bubble

c:

Chord

g:

Gas

i:

Interface

i :

The ith bubble

j :

The jth bubble groups

k :

The kth measuring points

L:

Lance

l:

Liquid

mean:

Mean

n:

Nozzle

References

  1. E.K. Ramasetti, V.V. Visuri, P. Sulasalmi, R. Mattila, and T. Fabritius: Steel Res. Int., 2018, vol. 90(2), p. 1800365.

    Article  Google Scholar 

  2. K. Chattopadhyay, M. Isac, and R.I.L. Guthrie: Ironmak. Steelmak., 2010, vol. 37(8), pp. 554–61.

    Article  CAS  Google Scholar 

  3. J.M. Zhou, Q. Gao, L. Liu, F.K. Liu, and H.J. Yan: International Conference on Chemical, Material and Metallurgical Engineering, 2011, pp. 365–70.

  4. L.J. Yao, R. Zhu, K. Dong, G.S. Wei, F. Zhao, and Y.X. Tang: Ironmak. Steelmak., 2021, vol. 48(2), pp. 180–90.

    Article  CAS  Google Scholar 

  5. K. Krishnapisharody and G.A. Irons: Metall. Mater. Trans. B., 2013, vol. 44B(6), pp. 1486–98.

    Article  Google Scholar 

  6. N. Lundkvist, P.Y. Ni, M. Iguchi, A. Tilliander, and P.G. Jönsson: Steel Res. Int., 2018, vol. 89(6), p. 1700536.

    Article  Google Scholar 

  7. L.L. Cao, Y.N. Wang, Q. Liu, L.F. Sun, S.S. Liao, W.D. Guo, K.S. Ren, B. Blanpain, and M.X. Guo: 9th International Symposium on High-Temperature Metallurgical Processing, 2018, pp. 353–64.

  8. X. Zhao, H.L. Zhao, L.F. Zhang, and L.Q. Yang: Int. J. Miner. Metall. Mater., 2018, vol. 25(1), pp. 37–44.

    Article  CAS  Google Scholar 

  9. J.Y. Xie, B. Wang, and J.Y. Zhang: J. Iron Steel Res. Int., 2020, vol. 27(9), pp. 1018–34.

    Article  CAS  Google Scholar 

  10. G. Akdogan and R.H. Eric: Metall. Mater. Trans. B., 1999, vol. 30B(2), pp. 231–39.

    Article  CAS  Google Scholar 

  11. A.H. Castillejos and J.K. Brimacombe: Metall. Mater. Trans. B., 1987, vol. 18B(4), pp. 649–58.

    Article  CAS  Google Scholar 

  12. A.H. Castillejos and J.K. Brimacombe: Metall. Mater. Trans. B., 1987, vol. 18B(4), pp. 659–71.

    Article  CAS  Google Scholar 

  13. H.K. Park and J.K. Yoon: Metall. Mater. Trans. B., 1990, vol. 21B(4), pp. 665–75.

    Article  CAS  Google Scholar 

  14. J.B. Xiao, H.J. Yan, L. Liu, F. Möller, Z.W. Hu, and S. Unger: Metall. Mater. Trans. B., 2019, vol. 50B(6), pp. 3002–11.

    Article  Google Scholar 

  15. J.B. Xiao, H.J. Yan, M. Schubert, L. Liu, A. Döß, E. Schleicher, and U. Hampel: Metall. Mater. Trans. B., 2021, vol. 52B(6), pp. 4002–11.

    Article  Google Scholar 

  16. M. Bjurström, A. Tilliander, M. Iguchi, and P. Jönsson: ISIJ Int., 2006, vol. 46(4), pp. 523–29.

    Article  Google Scholar 

  17. P. Ternstedt, P.Y. Ni, N. Lundkvist, A. Tilliander, and P.G. Jönsson: Ironmak. Steelmak., 2018, vol. 45(10), pp. 944–50.

    Article  CAS  Google Scholar 

  18. J.P.T. Kapusta: JOM., 2017, vol. 69(6), pp. 970–79.

    Article  CAS  Google Scholar 

  19. H.L. Zhao, J.Q. Wang, F.Q. Liu, and H.Y. Sohn: Metall. Mater. Trans. B., 2021, vol. 52(1), pp. 440–50.

    Article  CAS  Google Scholar 

  20. X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang: Metals., 2020, vol. 10(11), p. 1520.

    Article  CAS  Google Scholar 

  21. M. Akashi, O. Keplinger, N. Shevchenko, S. Anders, M.A. Reuter, and S. Eckert: Metall. Mater. Trans. B., 2020, vol. 51B(1), pp. 124–39.

    Article  Google Scholar 

  22. M. Salcudean, K.Y.M. Lai, and R.I.L. Guthrie: Can. J. Chem. Eng., 1985, vol. 63(1), pp. 51–61.

    Article  CAS  Google Scholar 

  23. M.P. Schwarz and W.J. Turner: Appl. Math. Model., 1988, vol. 12(3), pp. 273–79.

    Article  Google Scholar 

  24. D. Mazumdar and R.I.L. Guthrie: ISIJ Int., 1994, vol. 34(5), pp. 384–92.

    Article  CAS  Google Scholar 

  25. M.P. Schwarz: Appl. Math. Model., 1996, vol. 20(1), pp. 41–51.

    Article  Google Scholar 

  26. Q. Cao and L. Nastac: Metall. Mater. Trans. B., 2018, vol. 49B(3), pp. 1388–1404.

    Article  Google Scholar 

  27. J.H. Wei, Y. He, and G.M. Shi: Steel Res. Int., 2011, vol. 82(6), pp. 693–702.

    Article  CAS  Google Scholar 

  28. D.K. Chibwe, G. Akdogan, G.A. Bezuidenhout, J.P.T. Kapusta, S. Bradshaw, and J.J. Eksteen: J. S. Afr. Inst. Min. Metall., 2015, vol. 115(5), pp. 349–54.

    Article  Google Scholar 

  29. H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang: Int. J. Miner. Metall. Mater., 2019, vol. 26(9), pp. 1092–1104.

    Article  CAS  Google Scholar 

  30. Y.T. Liu, T.Z. Yang, Z. Chen, Z.Y. Zhu, L. Zhang, and Q. Huang: Trans. Nonferrous Met. Soc. China., 2020, vol. 30(1), pp. 249–58.

    Article  CAS  Google Scholar 

  31. K.F. Feng, J.Y. Zhang, B. Wang, J. Xu, J.Y. Xie, W.L. Cheng, D.Y. Yin, and S.B. Zheng: 5th International Symposium on High-Temperature Metallurgical Processing, 2014, pp. 451-57.

  32. D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer: Metall. Mater. Trans. B., 2019, vol. 50B(5), pp. 2403–20.

    Article  Google Scholar 

  33. D. Obiso, M. Reuter, and A. Richter: Metall. Mater. Trans. B., 2021, vol. 52B(5), pp. 3064–77.

    Article  Google Scholar 

  34. H.L. Zhao, Y.D. Xiao, F.Q. Liu, and H.Y. Sohn: Metall. Mater. Trans. B., 2021, vol. 52B(6), pp. 3767–76.

    Article  Google Scholar 

  35. S. Zhu, Q.Y. Zhao, Y. Liu, M.Z. Zheng, X.L. Li, and T.A. Zhang: Metall. Mater. Trans. B., 2021, vol. 52B(6), pp. 4082–95.

    Article  Google Scholar 

  36. Y.M. Zhao, X. Peng, Y.F. Wang, Z.Y. Wei, G.S. Yu, and F.C. Wang: Ind. Eng. Chem. Res., 2020, vol. 59(8), pp. 3560–74.

    Article  CAS  Google Scholar 

  37. X.P. Guan and N. Yang: Chem. Eng. Res. Des., 2017, vol. 127, pp. 103–12.

    Article  CAS  Google Scholar 

  38. L.S. Zhai, P. Bian, Z.K. Gao, and N.D. Jin: Chem. Eng. Sci., 2016, vol. 144, pp. 346–63.

    Article  CAS  Google Scholar 

  39. X. Peng, Y.F. Wang, Z.Y. Wei, and G.S. Yu: Chem. Eng. Res. Des., 2018, vol. 136, pp. 358–70.

    Article  CAS  Google Scholar 

  40. X. Peng, Y.F. Wang, Z.Y. Wei, G.S. Yu, and F.C. Wang: Chem. Eng. Sci., 2018, vol. 190, pp. 126–39.

    Article  CAS  Google Scholar 

  41. N.H. Hoang, D.J. Euh, B.J. Yun, and C.H. Song: Int. J. Multiph. Flow., 2015, vol. 71, pp. 23–31.

    Article  CAS  Google Scholar 

  42. W.D. Liu, N.N. Clark, and A.I. Karamavruc: AICHE J., 1996, vol. 42(10), pp. 2713–20.

    Article  CAS  Google Scholar 

  43. N.N. Clark and R. Turton: Int. J. Multiph. Flow., 1988, vol. 14(4), pp. 413–24.

    Article  CAS  Google Scholar 

  44. W.D. Liu and N.N. Clark: Int. J. Multiph. Flow., 1995, vol. 21(6), pp. 1073–89.

    Article  CAS  Google Scholar 

  45. G. Bozzano and M. Dente: Comput. Chem. Eng., 2000, vol. 8, pp. 649–54.

    CAS  Google Scholar 

  46. M. Rüdisüli, T.J. Schildhauer, S.M.A. Biollaz, and J.R. van Ommen: Int. J. Multiph. Flow., 2012, vol. 44, pp. 1–14.

    Article  Google Scholar 

  47. E.O. Hoefele and J.K. Brimacombe: Metall. Mater. Trans. B., 1979, vol. 10B(4), pp. 631–48.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (U1702253 and 52174332).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting’an Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhao, Q., Liu, Y. et al. Local Bubble Characteristics in a Side-Blown Vortex Smelting Reduction Reactor. Metall Mater Trans B 53, 2303–2320 (2022). https://doi.org/10.1007/s11663-022-02530-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02530-5

Navigation