Skip to main content
Log in

Effect of Bath Depth and Nozzle Geometry on Spout Height in Submerged Gas Injection at Bottom

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Spout height is a widely used parameter to quantitatively analyze the performance of the submerged gas injection in industrial applications. However, the effect of bath depth and nozzle geometry on spout height in submerged gas injection is still unclear. In this work, the effect of bath depth and nozzle geometry on spout height in submerged gas injection at bottom was experimentally investigated. Circular-shaped, three-leaf-shaped, four-leaf-shaped, and four-flower-shaped nozzles were used for this study. Spout height was extracted from the images captured by high-speed camera and analyzed by digital image processing. The results indicate that the effect of nozzle geometry on spout height is as important as gas flow rate and bath depth. Through dimensional analysis, predictive correlations of spout height from circular shape and four-leaf shape were developed with dimensionless bath depth and a modified Froude number using orifice perimeter and opening area as characteristic parameters. Experimental data were compared with the correlations from literature and good agreement was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A, a, B, b, c, d, e, f, j, k, l :

Symbols (dimensionless)

a 1a 2a 7 :

Constants (dimensionless)

a o :

Orifice opening area (m2)

b 1b 2b 7 :

Constants (dimensionless)

c 1c 2c 7 :

Constants (dimensionless)

d o :

Nozzle diameter without internal geometry (m)

g :

Gravitational acceleration (m/s2)

H :

Spout height (m)

H :

Bath depth (m)

h i :

Instantaneous spout height from image i (m)

\( \bar{h} \) :

Time-averaged spout height (m)

\( \bar{h}_{\text{d}} \) :

Depth-averaged spout height (m)

h′:

Mean spout height (m)

I :

Index for bath depth (dimensionless)

k 1k 2k 10 :

Unknown constants (dimensionless)

L :

Independent physical unit (m)

L o :

Orifice perimeter (m)

M :

Independent physical unit (kg)

u A :

Error due to the first source (m)

u B :

Error due to the second source (m)

u C :

Total uncertainties of measured spout height (Percent)

Q :

Gas flow rate (m3/s)

T :

Independent physical unit (s)

W :

Vessel width (m)

ɛ :

Opening ratio (dimensionless)

ρ g :

Gas density (kg/m3)

ρ l :

Liquid density (kg/m3)

ν l :

Kinematic viscosity (m2/s)

Δ 1 :

Deviation for analyzing the influence of bath depth on spout height (dimensionless)

Δ 2 :

Deviation or analyzing the influence of nozzle geometry on spout height (dimensionless)

I, II:

Number (dimensionless)

References

  1. K.Y. Chu, H.H. Chen, P.H. Lai, H.C. Wu, Y.C. Liu, C.C. Lin and M.J. Lu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 948-62.

    Article  Google Scholar 

  2. A. Quiyoom, R. Golani, V. Singh and V.V. Buwa: Chem. Eng. Sci., 2017, vol. 170, pp. 777-89.

    Article  CAS  Google Scholar 

  3. W. Deng, X. Zhang, H. Wang, L. Feng, H. Zhang and G. Zhang: Chem. Eng. Process., 2018, vol. 126, pp. 168-77.

    Article  CAS  Google Scholar 

  4. J. P. T. Kapusta: JOM, 2017, vol. 69, pp. 970-79.

    Article  CAS  Google Scholar 

  5. L. Shui, Z. Cui, X. Ma, M.A. Rhamdhani, A.V. Nguyen and B. Zhao: Metall. Mater. Trans. B, 2015, vol. 47, pp. 135-44.

    Google Scholar 

  6. L. Liu, H. Yan and G. Zhao: Exp. Therm. Fluid Sci., 2015, vol. 62, pp. 109-21.

    Article  CAS  Google Scholar 

  7. L. Liu, H. Yan, T. Ziegenhein, H. Hessenkemper, Q. Li and D.Lucas: Chem. Eng. J. 2019, vol. 372, pp. 352-362.

    Article  CAS  Google Scholar 

  8. L. Liu, O. Keplinger, T. Ma, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan and D. Lucas: Chem. Eng. Sci., 2018, vol. 192, pp. 288-305.

    Article  CAS  Google Scholar 

  9. L. Liu, O. Keplinger, T. Ziegenhein, N. Shevchenko, S. Eckert, H. Yan and D. Lucas: Int. J. Multiphase Flow, 2019, vol. 110, pp. 218-37.

    Article  CAS  Google Scholar 

  10. D. Guo and G.A. Irons: Metall. Mater. Trans. B, 2002, vol. 33, pp. 377-84.

    Article  CAS  Google Scholar 

  11. K. Krishnapisharody and G. A. Irons: Metall. Mater. Trans. B, 2007, vol. 38, pp. 367-75.

    Article  CAS  Google Scholar 

  12. L. Shui, Z. Cui, X. Ma, M. A. Rhamdhani, A. Nguyen and B. Zhao: Metall. Mater. Trans. B, 2015, vol. 46, pp. 1218-25.

    Article  Google Scholar 

  13. : Master Thesis, Purdue University, Hammond, Indiana, United States, 2018.

    Google Scholar 

  14. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 1999, vol. 30, pp. 655-60.

    Article  CAS  Google Scholar 

  15. K. Yonezawa and K. Schwerdtfeger: Metall. Mater. Trans. B, 2000, vol. 31, pp. 461-68.

    Article  CAS  Google Scholar 

  16. P. E. Anagbo, J. K. Brimacombe and A. H. Castillejos: Can Metall Q., 1989, vol. 28, pp. 323-30.

    Article  CAS  Google Scholar 

  17. V. Sahajwalla, A.H. Castillejos and J.K. Brimacombe: Metall. Mater. Trans. B, 1990, vol 21, pp. 71-80.

    Article  CAS  Google Scholar 

  18. M. Peranandhanthan and D. Mazumdar: ISIJ Int., 2010, vol. 50, pp. 1622-31.

    Article  CAS  Google Scholar 

  19. L. Wu, P. Valentin and D. Sichen: Steel Res. Int., 2010, vol. 81, pp. 508-15.

    Article  CAS  Google Scholar 

  20. A.M. Amaro-Villeda, M.A. Ramirez-Argaez and A.N. Conejo: ISIJ Int., 2014, vol. 54, pp. 1-8.

    Article  CAS  Google Scholar 

  21. Z. Liu, L. Li and B. Li: ISIJ Int., 2017, vol. 57, pp. 1971-79.

    Article  CAS  Google Scholar 

  22. N. Lv, L. Wu, H. Wang, Y. Dong and C. Su: Int. J. Iron Steel Res., 2017, vol. 24, pp. 243–50.

    Article  Google Scholar 

  23. D. Mazumdar, P. Dhandapani and R. Sarvanakumar: ISIJ Int., 2017, vol. 57, pp. 286-95.

    Article  CAS  Google Scholar 

  24. X. Jiang, Z. Cui, M. Chen and B. Zhao: Metall. Mater. Trans. B, 2019, vol. 50, pp. 782-89.

    Article  Google Scholar 

  25. J. Ma, P. Zhou, W. Cheng, Y. Song and P. Shi: Exp. Therm. Fluid Sci., 2016, vol. 75, pp. 220-27.

    Article  Google Scholar 

  26. H. Yan, J. Xiao, Y. Song, Z. Hu, Z. Tan and L. Liu: Trans. Nonferrous Met. Soc. China, 2019, vol. 29, pp. 213-21.

    Article  CAS  Google Scholar 

  27. K. Krishnapisharody and G. A. Irons: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1486-98.

    Article  Google Scholar 

  28. J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L.Yang and S.H. Xiang: ISIJ Int., 1999, vol. 39, pp. 779-786.

    Article  CAS  Google Scholar 

  29. Q. Yang, B. Björkman and G. Carlsson: Steel Res., 1997, vol. 68, pp. 107-114.

    Article  CAS  Google Scholar 

  30. H. Yan, J. Xiao and Z. Hu: in 2016-Sustainable Industrial Processing Summit, (Flogen Star Outreach: 2016), pp. 199–212.

  31. M. M. Salazar-Campoy, R.D. Morales, A. Nájera-Bastida, I. Calderón-Ramos, V. Cedillo-Hernández and J.C. Delgado-Pureco: Metall. Mater. Trans. B, 2018, vol. 49, pp. 812-30.

    Article  Google Scholar 

  32. J. Mi, G.J. Nathan and R.E. Luxton: Exp. Fluids, 2000, vol. 28, pp. 93-94.

    Article  Google Scholar 

  33. G. Irons, A. Senguttuvan and K. Krishnapisharody: ISIJ Int., 2015, vol. 55, pp. 1-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51676211), Key R&D Plan of Hunan Province of China (No. 2017SK2253), and Fundamental Research Funds for the Central Universities of Central South University (No. 2015zzts044). One of the authors (J. XIAO) gratefully acknowledges the financial support from China Scholarship Council. The authors appreciate the help from Mr. Alexander Döß in this manuscript.

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 18, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Yan, H., Liu, L. et al. Effect of Bath Depth and Nozzle Geometry on Spout Height in Submerged Gas Injection at Bottom. Metall Mater Trans B 50, 3002–3011 (2019). https://doi.org/10.1007/s11663-019-01679-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01679-w

Navigation