Skip to main content
Log in

Computational Fluid Dynamics Simulation of Gas–Matte–Slag Three-Phase Flow in an ISASMELT Furnace

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A mathematical model was developed to simulate gas–matte–slag three-phase flow in ISASMELT furnace with a top-submerged lance. An experimentally verified simulation model was established by adopting a VOF multiphase model coupled with a realizable kε turbulence model. The flow field in ISASMELT furnace during the top-blowing process can be divided into 5 parts including injection, splashing, strong-loop, weak-loop, and sedimentation zones. The optimal lance diameter of 0.4 m and lance immersion depth of 0.4 m which have been applied in industry were obtained by investigating the mean velocity, phase volume fraction, splashing quantity, and wall shear stress distributions. Compared to the original operating conditions, a higher concentrate feeding rate of 140 t/h, a longer lance life of > 15 days, and a longer furnace life of 56 months were achieved for an industrial ISASMELT furnace operation under the improved lance diameter and immersion depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Li and P. Arthur: Yazawa Int. Symp. Metall. Mater.Proces., 2003, vol. 2, pp. 371–84.

    CAS  Google Scholar 

  2. B. Errington, P. Arthur, J.K. Wang, and Y. Dong: Proc. Int. Symp. Lead Zinc Proces., 2005, vol. 1, pp. 581–99.

    Google Scholar 

  3. M.L. Bakker, S. Nicolic, and P.J. Mackey: Miner. Eng., 2011, vol. 24(7), pp. 610–19.

    Article  CAS  Google Scholar 

  4. S. Nikolic, B. Hogg, and P. Voigt: Minerals Metals Mater. Ser. Cham., 2018, vol. 1, pp. 435–43.

    Article  Google Scholar 

  5. B. Hogg, S. Nikolic, P. Voigt, and P. Telford: Minerals Metals Mater. Ser., 2018, vol. 1, pp. 149–58.

    Article  Google Scholar 

  6. H.L. Zhao, T.T. Lu, F.Q. Liu, P. Yin, and S. Wang: JOM., 2019, vol. 71(5), pp. 1643–9.

    Article  CAS  Google Scholar 

  7. P.S. Arthur and S.P. Hunt: John Floyd Int. Symp. Sustain. Dev. Metals Process., 2005, vol. 1, pp. 73–94.

    Google Scholar 

  8. A.S. Burrows, P.J. Partington, and P.H. Mascrenhas: Proc. Fray Int. Symp., 2012, vol. 1, pp. 217–26.

    Google Scholar 

  9. M. Shamsuddin and H.Y. Sohn: JOM., 2019, vol. 71(4), pp. 3253–65.

    Article  CAS  Google Scholar 

  10. H.L. Zhao, P. Yin, L.F. Zhang, and S. Wang: Int. J. Minerals Metall. Mater., 2016, vol. 23(12), pp. 1369–76.

    Article  CAS  Google Scholar 

  11. H.L. Zhao, T.T. Lu, P. Yin, L.Z. Mu, and F.Q. Liu: Metals., 2019, vol. 9(5), p. 565.

    Article  CAS  Google Scholar 

  12. M. Tian and X.Y. Guo: Minerals Metals Mater. Ser., 2018, vol. 1, pp. 585–97.

    Article  Google Scholar 

  13. Y.S. Morsi, W. Yang, D. Achim, and A. Acquadro: WIT Trans. Modell. Simulat., 2001, vol. 30, pp. 95–104.

    Google Scholar 

  14. Y.H. Wang, S.B. Wang, Y.G. Wei, T.F. Zhang, and S.W. Li: Appl. Thermal Eng., 2020, vol. 181(1), p. 115971.

    Article  CAS  Google Scholar 

  15. K.Z. Song and A. Jokilaakso: Miner. Process. Extr. Metall. Rev., 2020, vol. 41, pp. 1–15.

    Article  Google Scholar 

  16. Y.N. Wang, M. Vanierschot, L.L. Cao, Z.F. Cheng, B. Blanpain, and M.X. Guo: Chem. Eng. Sci., 2018, vol. 192, pp. 1091–104.

    Article  CAS  Google Scholar 

  17. Y.N. Wang, L.L. Cao, M. Vanierschot, Z.F. Cheng, B. Blanpain, and M.X. Guo: Chem. Eng. Sci., 2020, vol. 212, p. 115359.

    Article  Google Scholar 

  18. V.P. Zhukov, B.V. Kolmachikhin, and B. Kolmachikhina: Metallurgist., 2020, vol. 63(11), pp. 1220–26.

    Article  CAS  Google Scholar 

  19. T. Goda, M. Iguchi, and Y. Sasaki: Mater. Trans., 2005, vol. 46(11), pp. 2461–66.

    Article  CAS  Google Scholar 

  20. H.L. Zhao, L.F. Zhang, P.Y. Yin, and S. Wang: Int. J. Chem. React. Eng., 2017, vol. 15(3), p. 15.

    Google Scholar 

  21. Y.H. Pan and D. Langberg: The Journal of Computational Multiphase Flows., 2010, vol. 2(3), pp. 151–64.

    Article  CAS  Google Scholar 

  22. M. Akashi, O. Keplinger, N. Shevchenko, S. Anders, M.A. Reuter, and S. Eckertet: Metall. Mater. Trans. B., 2020, vol. 51(1), pp. 124–39.

    Article  CAS  Google Scholar 

  23. D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer: Metall. Mater. Trans. B., 2019, vol. 50(6), pp. 2403–20.

    Article  CAS  Google Scholar 

  24. D. Obiso, M. Akashi, S. Kriebitzsch, B. Meyer, M. Reuter, S. Eckert, and A. Richter: Metall. Mater. Trans. B., 2020, vol. 51, pp. 1509–25.

    Article  CAS  Google Scholar 

  25. S.B. Wang, H. Wang, J.X. Xu, D.F. Zhu, H. Sun, and H.J. Li: Adv. Mater. Res., 2012, vol. 383–390, pp. 7406–12.

    Google Scholar 

  26. H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang: Int. J. Minerals Metall. Mater., 2019, vol. 26(9), pp. 1092–104.

    Article  CAS  Google Scholar 

  27. H.L. Zhang, C.Q. Zhou, W.U. Bing, and Y.M. Chen: J. South Afr. Inst. Min. Metall., 2015, vol. 115(5), pp. 457–63.

    Article  Google Scholar 

  28. Y. Li, W.T. Lou, and M.Y. Zhu: Ironma. Steelmak., 2013, vol. 40(7), pp. 505–14.

    Article  CAS  Google Scholar 

  29. K.L. Tang: Dissertation. Hammond, 2018.

  30. W.P. Deng, X.H. Zhang, H. Wang, L.B. Feng, H. Zhang, and G.J. Zhang: Chem. Eng. Process., 2018, vol. 126, pp. 168–77.

    Article  CAS  Google Scholar 

  31. X. Wang, S.G. Zheng, and M.Y. Zhu: Ironmak. Steelmak., 2020, vol. 47(08), pp. 915–25.

    Article  CAS  Google Scholar 

  32. E. Kolczyk, Z. Miczkowski, and J. Czernecki: J. Numer. Methods Heat Fluid Flow., 2017, vol. 27(12), pp. 2799–815.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51974018), the Guangxi Innovation-Driven Development Project (AA18242042-1), and the Fundamental Research Funds for the Central Universities (FRF-TP-19-016A3). The authors also thank the China Scholarship Council for providing Chinese Government Scholarship to Hongliang Zhao to study as a Visiting Scholar in Professor Hong Yong Sohn’s laboratory at the University of Utah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yong Sohn.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 11, 2021; accepted July 23, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Xiao, Y., Liu, F. et al. Computational Fluid Dynamics Simulation of Gas–Matte–Slag Three-Phase Flow in an ISASMELT Furnace. Metall Mater Trans B 52, 3767–3776 (2021). https://doi.org/10.1007/s11663-021-02290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02290-8

Navigation