Skip to main content
Log in

Dissolution of SiO2 Inclusions in CaO-SiO2-Based Slags In Situ Observed Using High-Temperature Confocal Scanning Laser Microscopy

  • Topical Collection: 2021 Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, the dissolution mechanism of SiO2 inclusion particles in CaO-SiO2-based refining slags at 1793 K-1853 K was investigated using high-temperature confocal scanning laser microscopy. The rate-limiting step of the SiO2 inclusion dissolution in CaO-SiO2-based refining slags was the diffusion of SiO2 in CaO-SiO2-based slags when the boundary layer was formed. The main influence factor of the dissolution rate of SiO2 inclusions changed from the concentration gradient and the interface area to the interface area during the particle dissolution process. With the increase of the CaO/SiO2 ratio of slag from 0.5 to 1.25, the dissolution time of the inclusion obviously decreased, indicating that a higher CaO/SiO2 ratio of slag was beneficial to the removal of inclusions by the slag absorption. The dissolution rate of inclusions increased first and then decreased with higher Al2O3 content. The optimal Al2O3 content of CaO-SiO2-Al2O3-3 pct MgO slag was 5 pct to promote the inclusion removal. The higher experimental temperature promoted the dissolution of SiO2 inclusions in slags. A linear relationship between the dissolution rate of SiO2 particles (v) and a ratio of concentration difference and slag viscosity (ΔC/η) was fitted as v = 800.29 × ΔC/η. The dissolution rate of SiO2 inclusions in CaO-SiO2-Al2O3-3 pct MgO slags commonly used for the Si-Mn-killed steels was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Yu, X. Lv, S. Xiang, and X. Jian: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 2063–71.

    Article  Google Scholar 

  2. W.D. Cho and P. Fan: ISIJ Int., 2004, vol. 44, pp. 229–34.

    Article  CAS  Google Scholar 

  3. L. Zhang, M. Chen, M. Huang, N. Wang, and C. Wang: Metall. Mater. Trans. B., 2021, vol. 52, pp. 2703–14.

    Article  CAS  Google Scholar 

  4. K. Goto, B.B. Argent, and W.E. Lee: J Am Ceram Soc., 2005, vol. 80, pp. 461–71.

    Article  Google Scholar 

  5. T. Miki and A. Kawakami: ISIJ Int., 2020, vol. 60, pp. 1434–7.

    Article  CAS  Google Scholar 

  6. L. Gao, M. Ma, H. Hu, and Z. Yan: Int. J. Miner. Met. Mater., 2019, vol. 26, pp. 483–92.

    Article  CAS  Google Scholar 

  7. S. Li, G. Cheng, Z. Miao, L. Chen, and X. Jiang: Int. J. Miner. Met. Mater., 2019, vol. 26, pp. 291–300.

    Article  CAS  Google Scholar 

  8. J. Guo, X. Chen, S. Han, Y. Yan, and H. Guo: Int J Min Met Mater., 2020, vol. 27, pp. 328–39.

    Article  CAS  Google Scholar 

  9. X. Zhao, Z. Yang, and F. Zhang: Int. J. Miner. Met. Mater., 2020, vol. 27, pp. 620–9.

    Article  CAS  Google Scholar 

  10. D. Fu, G. Wen, X. Zhu, J. Guo, and P. Tang: J. Iron Steel. Res. Int., 2021, vol. 28, pp. 1133–40.

    Article  CAS  Google Scholar 

  11. J.H. Kim, S.G. Kim, and A. Inoue: Acta Mater., 2001, vol. 49, pp. 615–22.

    Article  CAS  Google Scholar 

  12. S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B., 2000, vol. 31, pp. 406–10.

    Article  Google Scholar 

  13. M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar: Ironmak Steelmak., 2002, vol. 29, pp. 47–52.

    Article  CAS  Google Scholar 

  14. B.J. Monaghan and L. Chen: J. Non-Cryst. Solids., 2004, vol. 347, pp. 254–61.

    Article  CAS  Google Scholar 

  15. B.J. Monaghan and L. Chen: Steel. Res. Int., 2005, vol. 76, pp. 348–54.

    Article  CAS  Google Scholar 

  16. J. Liu, F. Verhaeghe, M. Guo, B. Blanpain, and P. Wollants: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3818–24.

    CAS  Google Scholar 

  17. J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.

    Article  CAS  Google Scholar 

  18. J. Liu, L. Zhu, M. Guo, F. Verhaeghe, B. Blanpain, and P. Wollants: Metall. Res. Technol., 2008, vol. 105, pp. 255–62.

    CAS  Google Scholar 

  19. S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard: J. Am .Ceram. Soc., 2014, vol. 97, pp. 316–25.

    Article  CAS  Google Scholar 

  20. P. Yan, B.A. Webler, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B., 2015, vol. 46, pp. 2414–8.

    Article  CAS  Google Scholar 

  21. K. Miao, A. Haas, M. Sharma, W. Mu, and N. Dogan: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 1612–23.

    Article  Google Scholar 

  22. M. Sharma, W. Mu and N. Dogan: Alstech, 2018, pp. 2601–08.

  23. T. Tian, Y. Zhang, H. Zhang, K. Zhang, J. Li, and H. Wang: Int. J. Appl. Ceram. Technol., 2019, vol. 16, pp. 1–10.

    Article  CAS  Google Scholar 

  24. Y. Park, Y. Cho, W. Cha, and Y. Kang: J. Am. Ceram. Soc., 2020, vol. 103, pp. 2210–24.

    Article  CAS  Google Scholar 

  25. M. Sharma and N. Dogan: Metall. Mater. Trans. B., 2020, vol. 51B, pp. 570–80.

    Article  Google Scholar 

  26. Y. Lee, J.K. Yang, D.J. Min, and J.H. Park: Ceram. Int., 2019, vol. 45, p. 20251.

    Article  CAS  Google Scholar 

  27. S. Michelic, J. Goriupp, S. Feichtinger, Y. Kang, C. Bernhard, and J. Schenk: Steel Res. Int., 2016, vol. 87, pp. 57–67.

    Article  CAS  Google Scholar 

  28. A.B. Fox, M. Valdez, and J. Gisby: ISIJ Int., 2004, vol. 44, pp. 836–45.

    Article  CAS  Google Scholar 

  29. Y. Ren, L. Zhang, W. Fang, S. Shao, J. Yang, and W. Mao: Metall. Mater. Trans. B., 2016, vol. 47B, pp. 1024–34.

    Article  Google Scholar 

  30. T. Yuan, L. Zhang, Y. Ren, Q. Zhao, and C. Liu: Steel Res. Int., 2020, vol. 92, p. 2000506.

    Article  Google Scholar 

  31. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad., 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  32. K.C. Mills and B.J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1–120.

    Article  CAS  Google Scholar 

  33. O. Levenspiel: Chemical Reaction Engineering, Wiley, New York, 1999, pp. 566–88.

    Google Scholar 

  34. M.J. Whelan: Met. Sci. J., 1969, vol. 3, pp. 95–7.

    Article  CAS  Google Scholar 

  35. H.B. Aaron, D. Fainstein, and G.R. Kotler: J Appl Phys., 1970, vol. 41, pp. 4404–10.

    Article  Google Scholar 

  36. L.C. Brown: J Appl Phys., 1976, vol. 47, pp. 449–58.

    Article  Google Scholar 

  37. F. Verhaeghe, S. Arnout, B. Blanpain and P. Wollants: Phys Rev E, 2005, vol. 72, pp. 036308.

  38. M. Valdez, G.S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Nature Science Foundation of China (Grant Nos. U1860206, 51725402), the S&T Program of Hebei (Grant Nos. 20311004D, 20311005D, 20311006D, 20591001D), the High Steel Center (HSC) at Yanshan University, Beijing International Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials (ICSM) and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing (USTB), China, and Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education) Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 19, 2021; accepted November 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhu, P., Ren, C. et al. Dissolution of SiO2 Inclusions in CaO-SiO2-Based Slags In Situ Observed Using High-Temperature Confocal Scanning Laser Microscopy. Metall Mater Trans B 53, 682–692 (2022). https://doi.org/10.1007/s11663-021-02401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02401-5

Navigation