Skip to main content
Log in

Dissolution Behavior of Aluminum Titanate Inclusions in Steelmaking Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The current work investigates the dissolution path and mechanism of aluminum titanate inclusions in steelmaking slags using a high-temperature confocal scanning laser microscope (CSLM). To study this phenomenon, a single particle of aluminum titanate is dissolved in slag at 1773 K. During the dissolution process, gas bubble evolution is observed. Further, the particle–slag system is rapidly quenched using helium at different stages of dissolution. The quenched samples are examined for distribution of the constituent elements: Al, Ti, Ca, and Si using the scanning electron microscope (SEM). Phases such as alumina, titanium-rich slag, and calcium titanate are detected at the particle–slag interface. The dissolution path of aluminum titanate is proposed in the following steps. First, aluminum titanate dissociates into alumina, titanium oxide, and oxygen while slag penetrates through the particle. In the next step, the alumina and titanium oxide dissolve in slag, and the oxygen leaves the system. The existence of gas bubbles enhances the overall rate of Al2TiO5 dissolution. The dissolution of Al2TiO5 appears to be controlled by mass transfer in the slag. Evidence in support of this finding is the particle–slag interface characterization by line scan analysis and calculated diffusivity values being inversely proportional to the viscosity of slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Liu, L. Chen, H. Bi, and X. Che: Acta Metall. Sin. 2014, vol. 27, pp. 452–6.

    Article  CAS  Google Scholar 

  2. M. Vedani and A. Mannucci: ISIJ Int., 2008, vol. 42, pp. 1520–6.

    Article  Google Scholar 

  3. M.B. Assar, J. Singleton (2005) AISTech, 2: 39–48.

    Google Scholar 

  4. Y. Zhang and M.S. Dudzic: J. Process Control, 2006, vol. 16, pp. 819–29.

    Article  CAS  Google Scholar 

  5. S. Ogibayashi: Taikabutsu Overseas, 1994, vol. 15, pp. 3–14.

    Google Scholar 

  6. J. Burja, F. Tehovnik, J. Lamut, and M. Knap: Mater. Tehnol., 2013, vol. 47, pp. 217–22.

    CAS  Google Scholar 

  7. F. Tehovnik, J. Burja, B. Arh, and M. Knap: Metalurgija, 2015, vol. 54, pp. 371–4.

    Google Scholar 

  8. J.D. Smith, K.D. Peaslee: Development of Submerged Entry Nozzles That Resist Clogging. American Iron and Steele Institute, Washington, DC (2002).

    Book  Google Scholar 

  9. S. Abdelaziz, G. Megahed, I. El-Mahallawi, and H. Ahmed: Ironmak. Steelmak., 2009, vol. 36, pp. 432–41.

    Article  CAS  Google Scholar 

  10. S. Basu, S.K. Choudhary, and N.U. Girase: ISIJ Int., 2004, vol. 44, pp. 1653–60.

    Article  CAS  Google Scholar 

  11. O. Araromi, B.G. Thomas, and E. Conzemius: Mater. Sci. Technol. Conf. 2009, pp. 1–10.

  12. J.W. Farrell, and D.C. Hilty: in 28th Electric Furnace Proceedings, 1971, pp. 31–46.

  13. B.G. Thomas and H. Bai: Iron Steel Soc., 2001, vol. 18, pp. 895–912.

    Google Scholar 

  14. P. Kaushik, R. Lule, G. Castillo, J.C. Delgado, F. Lopez, C. Perim, G. Pigatti, B. Henriques, F. Barbosa, and A. Nascimento: Iron Steel Technol., 2016, vol. 13, pp. 168–85.

    Google Scholar 

  15. H. Cui, Y.P. Bao, M. Wang, and W.S. Wu: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 154–8.

    Article  CAS  Google Scholar 

  16. A. Karasangabo and C. Bernhard: J. Adhes. Sci. Technol., 2012, vol. 26, pp. 1141–56.

    CAS  Google Scholar 

  17. D. Wang, J. Liu, M. Jiang, F. Tsukihashi, and H. Matsuura: Int. J. Miner. Metall. Mater., 2011, vol. 18, pp. 646–51.

    Article  CAS  Google Scholar 

  18. Z.S. Ren, X.J. Hu, X.M. Hou, X.X. Xue, and K.C. Chou: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 345–52.

    Article  CAS  Google Scholar 

  19. M. Sharma, W. Mu, and N. Dogan: in AISTech 2018, 2018, pp. 2601–8.

    Google Scholar 

  20. M. Sharma, H.A. Dabkowska, and N. Dogan: Steel Res. Int., 2018; 70:1220-24

    CAS  Google Scholar 

  21. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, and M. Van Ende: Calphad, 2016, vol. 54, pp. 35–53.

    Article  CAS  Google Scholar 

  22. B.J. Keene and K.C. Mills: Slag Atlas, Verlag Stahleisen, Dusseldorf, 1995, pp. 345-47.

    Google Scholar 

  23. K.C. Mills (1995) Slag atlas, Verlag Stahleisen, Dusseldorf, pp. 353-54.

    Google Scholar 

  24. J.F. Shackleford and W. Alexander: Materials Science and Engineering, 3rd edn., CRC Press, Boca Raton; 2001.

    Google Scholar 

  25. Microlink Measurement & Control: Technical Notes on Thermocouple Accuracy, http://www.microlink.co.uk/tctable.html.

  26. Oishi Y, Cooper AR, Kingery WD (1965) J. Am. Ceram. Soc. 48:88–95.

    Article  CAS  Google Scholar 

  27. J.H. Park, I. Jung, and H. Lee: ISIJ Int., 2006, vol. 46, pp. 1626–34.

    Article  CAS  Google Scholar 

  28. H. jurgen Seifert and F. Aldinger: Zeitschrift für Met., 1996, vol. 87, pp. 841–53.

  29. M. Serratos and A. Bronson: Wear, 1996, vol. 198, pp. 267–70.

    Article  CAS  Google Scholar 

  30. I.B. De Arenas (2012) In: D.A. Lakshmanan (ed) Sintering of Ceramics—New Emerging Techniques, 1st Ed., InTech, Rijeka, pp. 503-36.

    Google Scholar 

  31. M. Sharma, W. Mu, and N. Dogan: JOM, 2018, vol. 70, pp. 1220–4.

    Article  CAS  Google Scholar 

  32. M. Sharma and N. Dogan (2019) In: Nakano J, Pistorious PC, Tamerler C, Yasuda H, Zhang Z, Dogan N, Wang W, Saito N, Webler B (eds) Advanced Real Time Imaging II Cutting Edge Techniques in Materials Science Studies. Springer, New York, pp. 119–27.

    Chapter  Google Scholar 

  33. O. Levenspiel: Chemical Reaction Engineering, vol. 19, Third., John Wiley and Sons, New york, 1999.

    Google Scholar 

  34. B.J. Monaghan and L. Chen: Ironmak. Steelmak., 2006, vol. 33, pp. 323–30.

    Article  CAS  Google Scholar 

  35. O. Levenspiel: Chemical Reaction Engineering, 2nd Ed., John Wiley & Sons, New York, 1999.

    Google Scholar 

  36. M. Kowalski, P.J. Spencer, and D. Neuschutz: Slag Atlas, Verlag Stahleisen, Dusseldorf, 1995, pp. 21-214.

    Google Scholar 

  37. B.J. Monaghan and L. Chen: J. Non. Cryst. Solids, 2004, vol. 347, pp. 254–61.

    Article  CAS  Google Scholar 

  38. B.J. Monaghan, S.A. Nightingale, L. Chen, and G.A. Brooks: in International Conference on Molten Slags Fluxes and Salts, South Africa, 2004, pp. 585–94.

Download references

Acknowledgments

The authors would like to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC, Project No. 20000514) for funding this research. This research used a high-temperature confocal laser scanning microscope—SVF17SP funded by Canada Foundation for Innovation John Evans Leaders Fund (CFI JELF, Project Number: 32826) and a scanning electron microscope—JEOL 6610 located at the Canadian Centre for Electron Microscopy at McMaster University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Dogan, N. Dissolution Behavior of Aluminum Titanate Inclusions in Steelmaking Slags. Metall Mater Trans B 51, 570–580 (2020). https://doi.org/10.1007/s11663-019-01762-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01762-2

Navigation