Skip to main content
Log in

Effect of Slag Composition on Inclusions in Si-Deoxidized 18Cr-8Ni Stainless Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Laboratory experiments and thermodynamic calculation for the Si-deoxidized 18Cr-8Ni stainless steel with CaO-Al2O3-SiO2-CaF2-MgO-MnO slag were performed to investigate the effect of slag composition on inclusions in Si-deoxidized 18Cr-8Ni stainless steels. A high-basicity slag improved the cleanness of stainless steel, while a low basicity slag lowered the Al2O3 content in inclusions, lowering the melting temperature of inclusions and improving the deformability of inclusions. Approximately, 15 pct content of MgO in the initial slag was beneficial to reduce the corrosion of refractory and would not influence the composition of inclusions. The Al2O3 in slag should be lowered to a minimum to reduce the Al2O3 content in inclusions in Si-deoxidized 18Cr-8Ni stainless steel. The \( \log X_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }}^{i} + \log X_{\text{MgO}}^{i} - \log X_{MnO}^{i} - \log X_{{{\text{SiO}}_{2} }}^{i} \) of inclusions was expressed as a linear function of \( \log a_{{{\text{Al}}_{ 2} {\text{O}}_{ 3} }}^{\text{s}} + \log a_{\text{CaO}}^{\text{s}} - \log a_{MnO}^{\text{s}} - \log a_{{{\text{SiO}}_{2} }}^{\text{s}} \) of the slag, which was used to predict the composition of inclusions based on the activity of Al2O3, CaO, SiO2, and MnO in the slag. Moreover, the equilibrium curve of Al-O and the stability diagram of inclusions in Si-deoxidized 18Cr-8Ni stainless steel at 1873 K (1600 °C) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Zhang and B.G. Thomas: Metallurgical and Materials Transactions B, 2006, vol. 37 (5), pp. 733-61.

    Article  Google Scholar 

  2. L. Zhang: Journal of Iron and Steel Research International, 2006, vol. 13 (3), pp. 01-08.

    Article  Google Scholar 

  3. 3. L. Zhang: Journal of Iron and Steel Research International, 2006, vol. 13 (4), pp. 01-08.

    Article  Google Scholar 

  4. 4. L. Zhang: JOM, 2013, vol. 65 (9), pp. 1138-44.

    Article  Google Scholar 

  5. 5. Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S. Lekakh and K. Peaslee: Metallurgical and Materials Transactions B, 2014, vol. 45 (4), pp. 1291-303.

    Article  Google Scholar 

  6. 6. Y. Ren, L. Zhang and S. Li: ISIJ International, 2014, vol. 54 (12), pp. 2772-79.

    Article  Google Scholar 

  7. 7. Y. Gao and K. Sorimachi: ISIJ International, 1993, vol. 33 (2), pp. 291-97.

    Article  Google Scholar 

  8. 8. K. Sasai and Y. Mizukami: ISIJ International, 2001, vol. 41 (11), pp. 1331-39.

    Article  Google Scholar 

  9. 9. M. Long, X. Zuo, L. Zhang and D. Chen: ISIJ International, 2010, vol. 50 (5), pp. 712-20.

    Article  Google Scholar 

  10. 10. J.H. Park and H. Todoroki: ISIJ International, 2010, vol. 50 (10), pp. 1333-46.

    Article  Google Scholar 

  11. 11. L. Zhang: Steel Research International, 2006, vol. 77 (3), pp. 158-69.

    Google Scholar 

  12. 12. T. Miki and M. Hino: ISIJ International, 2004, vol. 44 (11), pp. 1800-09.

    Article  Google Scholar 

  13. 13. T. Miki and M. Hino: ISIJ International, 2005, vol. 45 (12), pp. 1848-55.

    Article  Google Scholar 

  14. 14. K. Suzuki, S. Ban-Ya and M. Hino: ISIJ International, 2001, vol. 41 (8), pp. 813-17.

    Article  Google Scholar 

  15. 15. K. Suzuki, S. Ban-Ya and M. Hino: ISIJ International, 2002, vol. 42 (2), pp. 146-49.

    Article  Google Scholar 

  16. 16. M. Tanahashi, T. Taniguchi, T. Kayukawa, C. Yamauchi and T. Fujisawa: Tetsu-to-Hagane, 2003, vol. 89 (12), pp. 1183-90.

    Google Scholar 

  17. 17. J.H. Park and Y.B. Kang: Metallurgical and Materials Transactions B, 2006, vol. 5 (37), pp. 791-97.

    Article  Google Scholar 

  18. 18. K. Mizuno, H. Todoroki, M.Noda and T.Tohge: Iron and Steelmaker, 2001, vol. 28 (8), pp. 93-101.

    Google Scholar 

  19. 19. H. Suito and R. Inoue: ISIJ International, 1996, vol. 36 (5), pp. 528-36.

    Article  Google Scholar 

  20. 20. L. Zhang and B.G. Thomas: ISIJ International, 2003, vol. 43 (3), pp. 271-91.

    Article  Google Scholar 

  21. 21. Y.-B. Kang and H.-G. Lee: ISIJ International, 2004, vol. 44 (6), pp. 1006-15.

    Article  Google Scholar 

  22. 22. C. Bertrand, J. Molinero, S. Molinero, R. Elvira, M. Wild, G. Barthold, P. Valentin and H. Schifferl: Ironmaking & Steelmaking, 2003, vol. 30 (2), pp. 165-69.

    Article  Google Scholar 

  23. 23. J.W. Kim, S.K. Kim, D.S. Kim, Y.D. Lee and P. Yang: ISIJ International, 1996, vol. 36 (Supplement), pp. S140-S43.

    Article  Google Scholar 

  24. 24. M. Hasegawa and S. Maruhashi: Tetsu-to-Hagane, 1977, vol. 63 (13), pp. 2087-93.

    Google Scholar 

  25. 25. T. Nishi and K. Shinme: Tetsu-to-Hagane, 1998, vol. 84 (12), pp. 837-43.

    Google Scholar 

  26. 26. S. Chen, M. Jiang, X. He and X. Wang: International Journal of Minerals, Metallurgy and Materials, 2012, vol. 19 (6), pp. 490-98.

    Article  Google Scholar 

  27. 27. J.S. Park and J.H. Park: Metallurgical and Materials Transactions B, 2014, vol. 45 (3), pp. 935-60.

    Google Scholar 

  28. 28. K. Sakata: ISIJ International, 2006, vol. 46 (12), pp. 1795-99.

    Article  Google Scholar 

  29. 29. Y. Ehara, S. Yokoyama and M. Kawakami: Tetsu-to-Hagane, 2007, vol. 93 (7), pp. 475-82.

    Article  Google Scholar 

  30. 30. W. Mao: Shanghai Metals, 2011, vol. 33 (2), pp. 58-62.

    Google Scholar 

  31. W. Yang, L. Zhang, H. Duan, Y. Ren, J. Wang, and X. Liu: EPD Congress 2014—TMS 2014 143rd Annual Meeting and Exhibition, Minerals, Metals and Materials Society, San Diego, CA, 2014, pp. 269–76.

  32. 32. P.K. Iwamasa and R.J. Fruehan: Metallurgical and Materials Transactions B, 1997, vol. 28 (1), pp. 47-57.

    Article  Google Scholar 

  33. 33. I.-H. Jung, S.A. Decterov and A.D. Pelton: ISIJ International, 2004, vol. 44 (3), pp. 527-36.

    Article  Google Scholar 

  34. 34. H. Todoroki and K. Mizuno: Iron and Steelmaker, 2003, vol. 30 (3), pp. 60-67.

    Google Scholar 

  35. 35. H. Todoroki and K. Mizuno: ISIJ International, 2004, vol. 44 (8), pp. 1350-57.

    Article  Google Scholar 

  36. Y. Zhuang, Z. Jiang, Y. Li (2010) J. Northeast. Univ. 31(10):1445-48.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51274034, 51334002, and 51404019), State Key Laboratory of Advanced Metallurgy, Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted April 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Zhang, L., Fang, W. et al. Effect of Slag Composition on Inclusions in Si-Deoxidized 18Cr-8Ni Stainless Steels. Metall Mater Trans B 47, 1024–1034 (2016). https://doi.org/10.1007/s11663-015-0554-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0554-0

Keywords

Navigation