Skip to main content
Log in

Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags: Sulfide Capacity and Phase Diagram

  • Topical Collection: Science and Technology of Molten Slags, Fluxes, and Salts
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Sulfur dissolves in molten oxide slag as a sulfide (S\(^{2-}\)) under many high-temperature metallurgical processing environments. O\(^{2-}\) and S\(^{2-}\) exchange reaction in the molten oxide has been well known. Traditionally, a sulfide capacity (\(C_{\text{S}}\)) was used to characterize the S-holding ability of molten slags under given sulfurizing potential (\(p_{{\text{S}}_2}/p_{{\text{O}}_2}\))—dilute dissolution behavior of sulfide in the molten slags. A number of sulfide capacity models have been reported. Those were reviewed with an emphasis on their core idea regarding the formulation of \(C_{\text{S}}\) models. It was pointed out that two issues should be explicitly taken into account in the modeling of sulfide dissolution in molten oxide: “oxygen distribution” in the slag (free, non-bridging, and bridging oxygens) and “sulfide stability.” These two issues are the core facts that control the sulfide dissolution in the molten oxide. The \(C_{\text{S}}\) models taking into account these issues resulted in improved results for the sulfide capacity calculation. In addition to this, some additional issues which were often neglected were raised: (1) sulfide dissolution in acidic slag, (2) sulfide dissolution at high S content, and (3) sulfide dissolution in multi-component slag where more than one basic oxide exist. These issues were interpreted by “cooperative phenomena” using the Modified Quasichemical Model (MQM) in the quadruplet approximation. This approach treats the \(C_{\text{S}}\) as the real S content under a given sulfurizing potential by formulating the Gibbs energy of the “oxysulfide” solution. The model explicitly distinguishes two distinct sublattices for cations and anions. A Second-Nearest-Neighbor (SNN) Short-Range Ordering (SRO) between two different cations over O anion was considered, which accounts for the distribution of free, bridging, and non-bridging oxygens in the slag. A First-Nearest-Neighbor (FNN) SRO between cation and anion (O and S) was taken into account, which represents the chemical stability of sulfide of different cations. By simultaneously taking into account the FNN- and SNN-SRO using the quadruplets, a configurational entropy of the mixing in the solution was described. Therefore, the approach takes into account the actual sulfide dissolution mechanism in the molten oxide more realistically, thereby resulting in superior prediction ability for the sulfide capacity calculation. In addition, the application of the MQM was extended in a highly concentrated region of sulfide, thereby describing molten “oxysulfide.” Recent experimental works on oxysulfide phase diagrams and the model calculations are discussed to show the wider model applicability. Sulfide dissolution in slags with more than one basic oxide component results in the sulfur association with the various cations. A quantitative description of the different cation-sulfur associations is described in terms of the FNN SRO. By considering the FNN SRO, it is possible to find which cation is more associated with sulfur than other cations. The application of the model is also useful not only in understanding the dissolution behavior of sulfide in slags but also in designing slag/flux in various metallurgical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.J.B. Fincham, F.D. Richardson, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 223, 40–62 (1954)

    CAS  Google Scholar 

  2. F.D. Richardson, C.J.B. Fincham, J. Iron Steel Inst. 178, 4–15 (1954)

    CAS  Google Scholar 

  3. N. Sano, Advanced Physical Chemistry for Process Metallurgy. Chap. 2, Thermodynamics of Slags (Academic Press, San Diego, 1997).

    Google Scholar 

  4. H. Gaye, J. Lehmann, Slag Atlas, Chapter 6.1 (Verlag Stahleisen GmbH, Dusseldorf, 1995).

    Google Scholar 

  5. M. Tokuda, Chemical Properties of Molten Slags. Chapter Sulfide Capacity (ISIJ, Tokyo, 1991).

    Google Scholar 

  6. J.G. Park, H.S. Eom, W.W. Huh, Y.S. Lee, D.J. Min, I. Sohn, Steel Res. Int. 82, 415–421 (2011)

    Article  CAS  Google Scholar 

  7. K.Y. Ko, J.H. Park, Metall. Mater. Trans. B 42B, 1224–1230 (2011)

    Article  CAS  Google Scholar 

  8. S. Ban-Ya, M. Hobo, T. Kaji, T. Itoh, M. Hino, ISIJ Int. 44, 1810–1816 (2004)

    Article  CAS  Google Scholar 

  9. S. Ban-Ya, M. Hino, ISIJ Int. 45, 1754–1756 (2005)

    Article  CAS  Google Scholar 

  10. J.A. Duffy, M.D. Ingram, J. Am. Chem. Soc. 93, 6448–6454 (1971)

    Article  CAS  Google Scholar 

  11. J.A. Duffy, M.D. Ingram, I.D. Sommerville, J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 74, 1410–1419 (1978)

    Article  CAS  Google Scholar 

  12. J. Duffy, M. Ingram, J. Non-Cryst. Solids 144, 76–80 (1992)

    Article  CAS  Google Scholar 

  13. J.A. Duffy, Geochim. Cosmochim. Acta 57, 3961–3970 (1993)

    Article  CAS  Google Scholar 

  14. J.A. Duffy, J. Chem. Educ. 73, 1138 (1996)

    Article  CAS  Google Scholar 

  15. Z. Slovic, L.J. Nedeljković, K. Raić, Z. Odanović, Met. Mater. 50, 185–192 (2012)

    CAS  Google Scholar 

  16. D.J. Sosinsky, I.D. Sommerville, Metall. Trans. B 17, 331–337 (1986)

    Article  Google Scholar 

  17. Y. Taniguchi, N. Sano, S. Seetharaman, ISIJ Int. 49, 156–163 (2009)

    Article  CAS  Google Scholar 

  18. G.-H. Zhang, K.-C. Chou, U. Pal, ISIJ Int. 53, 761–767 (2013)

    Article  CAS  Google Scholar 

  19. X. Hao, X. Wang, Steel Res. Int. 87, 359–363 (2016)

    Article  CAS  Google Scholar 

  20. Z.-S. Ren, X.-J. Hu, K.-C. Chou, J. Iron Steel Res. Int. 20, 21–25 (2013)

    Article  CAS  Google Scholar 

  21. R.W. Young, J.A. Duffy, G.J. Hassall, Z. Xu, Ironmak. Steelmak. 29, 201 (1992)

    Google Scholar 

  22. D. Gaskell, Trans. ISIJ 22, 997–1000 (1982)

    Article  CAS  Google Scholar 

  23. T. Mori, Trans. JIM 25, 761–771 (1984)

    Article  CAS  Google Scholar 

  24. K. Mills, S. Sridhar, Ironmak. Steelmak. 26, 262–268 (1999)

    Article  CAS  Google Scholar 

  25. M.M. Nzotta, D. Sichen, S. Seetharaman, ISIJ Int. 38, 1170–1179 (1998)

    Article  CAS  Google Scholar 

  26. J.A. Duffy, J. Chem. Soc. Faraday Trans. 88, 2397 (1992)

    Article  CAS  Google Scholar 

  27. R. Nilsson, M.M. Nzotta, D. Sichen, and S. Seetharaman, in Proceedings of 5th Molten Slags, Fluxes and Salts, Sydney, Australia, 1997, pp. 177–90.

  28. M.M. Nzotta, Scand. J. Metall. 26, 169–177 (1997)

    CAS  Google Scholar 

  29. M.M. Nzotta, D. Sichen, S. Seetharaman, Metall. Mater. Trans. B 30B, 909–920 (1999)

    Article  CAS  Google Scholar 

  30. D. Sichen, R. Nilsson, S. Seetharaman, Steel Res. 66, 458–462 (1995)

    Article  CAS  Google Scholar 

  31. R. Nisson, D. Sichen, S. Seetharaman, Scand. J. Metall. 25, 128 (1996)

    Google Scholar 

  32. M. Nzotta, R. Nisson, D. Sichen, S. Seetharaman, Ironmak. Steelmak. 24, 300 (1997)

    CAS  Google Scholar 

  33. R. Nisson, S. Seetharaman, Scand. J. Metall. 23, 81 (1994)

    Google Scholar 

  34. E. Drakliysky, R. Nisson, S. Seetharaman, High Temp. Mater. Processes 15, 263 (1996)

    Article  Google Scholar 

  35. E. Drakliysky, R. Nisson, S. Seetharaman, Can. Metall. Q. 36, 115 (1997)

    Google Scholar 

  36. R. Nisson, M.M. Nzotta, D. Sichen, and S. Seetharaman, in Proceedings of 5th Molten Slags. G. Belton, ed. Fluxes and Salts, Australian Institute of Metals and Materials, pp. 177–190

  37. M.M. Nzotta, M. Andreasson, P. Jönsson, S. Seetharaman, Scand. J. Metall. 29, 177–184 (2000)

    Article  CAS  Google Scholar 

  38. R.G. Reddy, M. Blander, Metall. Trans. B 18, 591–596 (1987)

    Article  Google Scholar 

  39. R.G. Reddy, M. Blander, Metall. Trans. B 20B, 137–140 (1987)

    Google Scholar 

  40. B. Chen, R. Reddy, and M. Blander, in Prof. of 3rd Molten Slags, Fluxes and Salts, H. Bell, ed., The Institute of Metals, London, UK, 1989, pp. 270–72.

  41. R.G. Reddy, W. Zhao, Metall. Mater. Trans. B 26B, 925–928 (1995)

    Article  CAS  Google Scholar 

  42. M. Chase (ed.), JANAF Thermochemical Tables (AIP, Woodbury, NY, 1985)

    Google Scholar 

  43. I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977).

    Book  Google Scholar 

  44. K. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworths, London, 1974).

    Google Scholar 

  45. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33, 295–311 (2009)

    Article  CAS  Google Scholar 

  46. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, Calphad 54, 35–53 (2016)

    Article  CAS  Google Scholar 

  47. G. Eriksson, P. Wu, M. Blander, A.D. Pelton, Can. Metall. Q. 33, 13–21 (1994)

    Article  CAS  Google Scholar 

  48. P. Wu, G. Eriksson, A.D. Pelton, M. Blander, ISIJ Int. 33, 26–35 (1993)

    Article  CAS  Google Scholar 

  49. J. Hilderbrand, R. Scott, The Solubility of Non-Electrolytes, 3rd edn. (Reinhold Publishing Corp., New York, 1050).

    Google Scholar 

  50. I.B. Smith, C.R. Masson, Can. J. Chem. 49, 683 (1971)

    Article  CAS  Google Scholar 

  51. R.G. Reddy, Metall. Mater. Trans. B 34B, 137–152 (2003)

    Article  CAS  Google Scholar 

  52. A.D. Pelton, G. Eriksson, A. Romero-Serrano, Metall. Trans. B 24, 817–825 (1993)

    Article  Google Scholar 

  53. P. Lin, A.D. Pelton, Metall. Mater. Trans. B 10B, 667–675 (1979)

    Article  CAS  Google Scholar 

  54. A.D. Pelton, M. Blander, Metall. Mater. Trans. B 17B, 805–815 (1986)

    Article  CAS  Google Scholar 

  55. A.D. Pelton, Glastechnischen Berichte 72, 214–226 (1999)

    CAS  Google Scholar 

  56. I.-H. Jung, Calphad 34, 332–362 (2010)

    Article  CAS  Google Scholar 

  57. R. Moretti, G. Ottonello, Metall. Mater. Trans. B 34B, 399–410 (2003)

    Article  CAS  Google Scholar 

  58. R. Moretti, G. Ottonello, Geochim. Cosmochim. Acta 69, 801–823 (2005)

    Article  CAS  Google Scholar 

  59. D.R. Baker, R. Moretti, Rev. Mineral. Geochem. 73, 167–213 (2011)

    Article  CAS  Google Scholar 

  60. H. Flood, K. Grojtheim, J. Iron Steel Inst. 171, 64–71 (1952)

    CAS  Google Scholar 

  61. H. Flood, K. Grojtheim, J. Iron Steel Inst. 173, 274–275 (1953)

    Google Scholar 

  62. J. Zhang, in Proceedings of 4th Molten Slags. Fluxes and, Salts, S. Ban-ya, ed., 1992, pp. 244–49.

  63. X.-M. Yang, M. Zhang, C.-B. Shi, G.-M. Chai, J. Zhang, Metall. Mater. Trans. B 43B, 241–266 (2012)

    Article  CAS  Google Scholar 

  64. X.-M. Yang, J.-S. Jiao, R.-C. Ding, C.-B. Shi, H.-J. Guo, ISIJ Int. 49, 1828–1837 (2009)

    Article  CAS  Google Scholar 

  65. J. Zhang, Acta Metall. Sin. (Engl. Lett.) 14, 177–190 (2001)

    CAS  Google Scholar 

  66. R. Schmid, Y.A. Chang, Calphad 9, 363–382 (1985)

    Article  CAS  Google Scholar 

  67. A. Jordan, Metall. Mater. Trans. B 1B, 239–249 (1970)

    Google Scholar 

  68. M.A.T. Andersson, P.G. Jönsson, M.M. Nzotta, ISIJ Int. 39, 1140–1149 (1999)

    Article  CAS  Google Scholar 

  69. C.-B. Shi, X.-M. Yang, J.-S. Jiao, C. Li, H.-J. Guo, ISIJ Int. 50, 1362–1372 (2010)

    Article  CAS  Google Scholar 

  70. X.-M. Yang, C.-B. Shi, M. Zhang, G.-M. Chai, F. Wang, Metall. Mater. Trans. B 42B, 1150–1180 (2011)

    Article  CAS  Google Scholar 

  71. X.-M. Yang, J.-Y. Li, M. Zhang, G.-M. Chai, J. Zhang, Metall. Mater. Trans. B 45B, 2118–2137 (2014)

    Article  CAS  Google Scholar 

  72. G.-H. Park, Y.-B. Kang, J.H. Park, ISIJ Int. 51, 1375–1382 (2011)

    Article  Google Scholar 

  73. B. Derin, M. Suzuki, T. Tanaka, ISIJ Int. 50, 1059–1063 (2010)

    Article  CAS  Google Scholar 

  74. A. Ma, S. Mostaghel, K. Chattopadhyay, ISIJ Int. 57, 114–122 (2017)

    Article  CAS  Google Scholar 

  75. Z.-C. Xin, J.-S. Zhang, W.-H. Lin, J.-G. Zhang, Y. Jin, J. Zheng, J.-F. Cui, and Q. Liu, Ironmak. Steelmak., 2020, pp. 1–9

  76. T. Tanaka, M. Nakamoto, M. Kawamoto, M. Hanao, CAMP-ISIJ 18, 898 (2005)

    Google Scholar 

  77. M. Hanao, M. Kawamoto, T. Tanaka, M. Nakamoto, ISIJ Int. 46, 346–351 (2006)

    Article  CAS  Google Scholar 

  78. M. Nakamoto, M. Hanao, T. Tanaka, M. Kawamoto, L. Holappa, M. Hämäläinen, ISIJ Int. 47, 1075–1081 (2007)

    Article  CAS  Google Scholar 

  79. A.D. Anastasiadis, G.D. Magoulas, M.N. Vrahatis, Neurocomputing 64, 253–270 (2005)

    Article  Google Scholar 

  80. R.A. Sharma , F.D. Richardson, 1965, vol. 233, pp. 1586–92.

  81. K. Abraham, M. Davies, F. Richardson, J. Iron Steel Inst. 196, 309–312 (1960)

    CAS  Google Scholar 

  82. Y.-B. Kang, I.-H. Jung, S.A. Decterov, A.D. Pelton, H.-G. Lee, ISIJ Int. 44, 965–974 (2004)

    Article  CAS  Google Scholar 

  83. H. Iwai, K. Kunisada, ISIJ Int. 29, 135–139 (1989)

    Article  CAS  Google Scholar 

  84. A.H. Chan, R.J. Fruehan, Metall. Trans. B 17B, 491–496 (1986)

    Article  Google Scholar 

  85. A.H. Chan, R.J. Fruehan, Metall. Trans. B 19B, 334–336 (1988)

    Article  CAS  Google Scholar 

  86. I.-H. Jung, E. Moosavi-Khoonsari, Metall. Mater. Trans. B 47B, 819–823 (2016)

    Article  CAS  Google Scholar 

  87. J.-H. Park, P.C.-H. Rhee, J. Non-Cryst. Solids 282, 7–14 (2001)

    Article  CAS  Google Scholar 

  88. H. Maekawa, T. Maekawa, K. Kawamura, T. Yokokawa, J. Non-Cryst. Solids 127, 53–64 (1991)

    Article  CAS  Google Scholar 

  89. G. Toop, C. Samis, Trans. Metall. Soc. AIME 224, 878–888 (1962)

    CAS  Google Scholar 

  90. T. Yokokawa, K. Niwa, Trans. JIM 10, 3–7 (1969)

    Article  CAS  Google Scholar 

  91. H. Gaye and J. Welfringer, in H. Fine and D. Gaskell, eds., Proceedings of the 2nd International Symposium on “Metallurgical Slags and Fluxes”, The Metallurgical Society of AIME, Warrendale, PA, 1984, pp. 357–75.

  92. Y.-B. Kang, J.H. Park, Metall. Mater. Trans. B 42B, 1211–1217 (2011)

    Article  CAS  Google Scholar 

  93. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, Y. Dessureault, Metall. Mater. Trans. B 31B, 651–659 (2000)

    Article  CAS  Google Scholar 

  94. K. Karsrud, Scand. J. Metall. 13, 173–175 (1984)

    Google Scholar 

  95. K. Karsrud, Scand. J. Metall. 13, 265–268 (1984)

    Google Scholar 

  96. H.S.C. O’Neill, J.A. Mavrogenes, J. Petrol. 43, 39 (2002)

    Google Scholar 

  97. H. Schreiber, S. Kozak, P. Leonhard, K.K. McManus, Glastech. Ber. 69, 389–396 (1987)

    Google Scholar 

  98. H. Gaye, J. Lehmann, T. Matsumiya, and W. Yamada, in Proceedings of 4th Molten Slags, S. Ban-ya, ed., Fluxes and Salts, ISIJ, 1992, pp. 103–08

  99. H. Gaye and J. Lehmann, in Proceedings of 5th Molten Slags, G. Belton, ed., Fluxes and Salts, Australian Institute Metals and Materials, 1997, pp. 27–34.

  100. L. Zhang and J. Lehmann, in Proceedings.of 9th Molten Slags, Fluxes and Salts, 2012, p. W043

  101. J. Lehmann, Rev. Met. Paris 105, 539–550 (2008)

    Article  CAS  Google Scholar 

  102. A.D. Pelton, P. Chartrand, Metall. Mater. Trans. A 32A, 1361–1383 (2001)

    Article  Google Scholar 

  103. P. Chartrand, A.D. Pelton, Metall. Mater. Trans. A 32A, 1385–1396 (2001)

    Article  CAS  Google Scholar 

  104. P. Chartrand, A.D. Pelton, Metall. Mater. Trans. A 32A, 1417–1430 (2001)

    Article  CAS  Google Scholar 

  105. Y.-B. Kang, A.D. Pelton, Metall. Mater. Trans. B 40B, 979–994 (2009)

    Article  CAS  Google Scholar 

  106. TCS Metal Oxide Solutions Database (TCOX10), ThermoCalc, https://thermocalc.com/content/uploads/Documentation/Databases/Thermodynamic/tcox10-technical-info.pdf, 2020, accessed Jan 2021.

  107. A.D. Pelton, P. Chartrand, G. Eriksson, Metall. Mater. Trans. A 32A, 1409–1416 (2001)

    Article  Google Scholar 

  108. E. Moosavi-Khoonsari, I.-H. Jung, Metall. Mater. Trans. B 47B, 2875–2888 (2016)

    Article  CAS  Google Scholar 

  109. A.D. Pelton, Y.-B. Kang, Metall. Mater. Trans. B 47B, 3241–3243 (2016)

    Article  CAS  Google Scholar 

  110. M.M. Nzotta, D. Sichen, S. Seetharaman, ISIJ Int. 39, 657–663 (1999)

    Article  CAS  Google Scholar 

  111. M. Gornerup, O. Wijk, Scand. J. Metall. 25, 103–107 (1996)

    Google Scholar 

  112. M.M. Nzotta, High Temp. Mater. Processes 16, 261–271 (1997)

    Article  CAS  Google Scholar 

  113. K.C. Mills, Slag Atlas, Chapter 2 (Verlag Stahleisen GmbH, Düsseldorf, 1995).

    Google Scholar 

  114. R. Berman, T. Brown, and H. Greenwood, Tech. Rep. Report No. TR-377, Atomic Energy of Canada Limited, 1985.

  115. D.-H. Kim and Y.-B. Kang, Correlation Between Applied Electricity and Electrochemical Desulfurization of Molten Iron by Molten Slag, E-Abstract (P-0397), MOLTEN2021, 11th International Conference on Molten Slag, Fluxes and Salts, 2021.

  116. H.S. Kim, H.-G. Lee, K.-S. Oh, Metall. Mater. Trans. A 32A, 1519–1525 (2001)

    Article  CAS  Google Scholar 

  117. D.-H. Woo, Y.-B. Kang, H. Gaye, H.-G. Lee, ISIJ Int. 49, 1490–1497 (2009)

    Article  CAS  Google Scholar 

  118. D.-H. Woo, H.-G. Lee, J. Am. Ceram. Soc. 93, 2098–2106 (2010)

    CAS  Google Scholar 

  119. R. Piao, H.-G. Lee, Y.-B. Kang, Acta Mater. 61, 683–696 (2013)

    Article  CAS  Google Scholar 

  120. R. Piao, Y.-B. Kang, and H.-G. Lee, in Proceedings of 9th Molten Slags, Fluxes and Salts, 2012, W112.

  121. Y. Jo, H.-G. Lee, Y.-B. Kang, ISIJ Int. 53, 751–760 (2013)

    Article  CAS  Google Scholar 

  122. Y. Wang, S. Sridhar, M. Valdez, Metall. Mater. Trans. B 33B, 625–632 (2002)

    Article  CAS  Google Scholar 

  123. R. Piao, H.-G. Lee, Y.-B. Kang, ISIJ Int. 53, 2132–2141 (2013)

    Article  CAS  Google Scholar 

  124. R. Piao, D.-H. Woo, H.-G. Lee, Y.-B. Kang, AIST Trans. 11, 218–228 (2014)

    CAS  Google Scholar 

  125. H. Gupta, J.E. Morral, H. Nowotny, Scr. Metall. 20, 889–894 (1986)

    Article  CAS  Google Scholar 

  126. Y.-B. Kang, P. Chartrand, Calphad 55, 69–75 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present author would like to express his gratitude to Prof. Emeritus A.D. Pelton, Polytechnique Montreal, Canada, for his encouragement and fruitful comments, Dr. D.-H. Woo, Dr. R. Piao, Mr. Y. Jo, and Ms. Y.-J. Kim, POSTECH, Korea, for their contribution to the phase diagram studies.

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn-Bae Kang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted March 11, 2021; accepted May 13, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YB. Progress of Thermodynamic Modeling for Sulfide Dissolution in Molten Oxide Slags: Sulfide Capacity and Phase Diagram. Metall Mater Trans B 52, 2859–2882 (2021). https://doi.org/10.1007/s11663-021-02224-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02224-4

Navigation