Skip to main content
Log in

Mass Action Concentration Calculation and Experimental Study on Molten Vortex Direct Reduction of Vanadium–Titanium Magnetite

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In order to realize the comprehensive and efficient recovery of vanadium–titanium magnetite, a mass action concentration calculation model for direct melting reduction was established, and the mechanisms and limiting factors for the separation and enrichment between Fe, V, and Ti were also studied through molten vortex direct reduction experiments. The mass effect concentration modeling results show that increasing the temperature and carbon–iron ratio promotes Fe, Ti, and V reduction, while adding CaO and MgO inhibits Ti reduction. CaO and MgO in the slag preferentially combine with TiO2 rather than SiO2, and increasing MgO in the slag contributes to the decomposition of the Al2O3.TiO2. Vortex stirring efficiently prevents slag crusting, alleviates foam slag problems, and promotes full reaction in the melt. Appropriate increases in reaction temperature, carbon–iron ratio, and holding time are beneficial for reduction in the molten vortex direct reduction process, while excessive increases in these parameters will result in titanium reduction. Under optimal experimental conditions, the recovery of Fe and V in the metal is 99.61 to 99.74 pct and 92.63 to 94.3 pct, respectively, with TiO2 content in the slag being 50.9 to 51.2 pct, and TiO2 in the slag mainly concentrated in Mg0.6Ti2.4O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W.G. Fu, Y.C. Wen, and E.H. Xie: J. Iron Steel Res. (International), 2011, vol. 18, pp. 7–10+18.

    Article  CAS  Google Scholar 

  2. Y. Ou, Y.S. Sun, J.W. Yu, and Y.J. Li: J. Iron Steel Res., 2021, vol. 33, pp. 267–78.

    CAS  Google Scholar 

  3. G.M. Zhang, K.Q. Feng, and H.F. Yue: JOM, 2016, vol. 68, pp. 2525–32.

    Article  CAS  Google Scholar 

  4. Q.Q. Hu, D.L. Ma, K. Zhou, Y.J. Liu, Y. You, Z.X. You, and X.W. Lv: Powder Technol., 2021, vol. 396, pp. 710–17.

    Article  Google Scholar 

  5. J. Qin, Y. Wang, Z.X. You, L.Y. Wen, and X.W. Lv: J. Mater. Res. Technol., 2020, vol. 9, pp. 4272–82.

    Article  CAS  Google Scholar 

  6. J.J. Shi, Y.C. Qiu, B. Yu, X.K. Xie, J.J. Dong, C.L. Hou, J.Z. Li, and C.S. Liu: JOM, 2022, vol. 74, pp. 654–67.

    Article  CAS  Google Scholar 

  7. Y.F. Cai, N.N. Song, Y.F. Yang, L.M. Sun, and P. Hu: Int. J. Miner. Metall. Mater., 2022, vol. 29, pp. 22–31.

    Article  CAS  Google Scholar 

  8. Y.F. Guo, Y.N. Lu, T. Jiang, G.Z. Qiu, and H.G. Dong: J. Iron Steel Res. Int., 2009, vol. 16, pp. 1353–56.

    Google Scholar 

  9. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, M.J. Tang, L.Z. Yang, and G.Z. Qiu: Trans. Nonferrous Metals Soc. China, 2018, vol. 28, pp. 2528–37.

    Article  CAS  Google Scholar 

  10. J. Tang, Y. Zhang, M.S. Chu, and X.X. Xue: J. Northeast. Univ., 2013, vol. 34, pp. 956–60.

    CAS  Google Scholar 

  11. J.M. Qie, J.J. Gao, Y.Y. Zhang, X.Y. Wan, and F. Wang: Trans. Indian Inst. Metals, 2021, vol. 74, pp. 1–3.

    Article  Google Scholar 

  12. C. Yin, S.F. Zhang, X.K. Yang, W.N. Yuan, W.Z. Yu, L.Y. Wen, T. Li, and C.G. Bai: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 4096–4108.

    Article  Google Scholar 

  13. J.L. Qi: Res. Iron Steel, 2014, vol. 42, pp. 17–21.

    CAS  Google Scholar 

  14. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu: J. Mater. Res. Technol., 2019, vol. 8, pp. 3036–43.

    Article  CAS  Google Scholar 

  15. G.J. Cheng, T. Han, X.F. Zhang, X.X. Xue, H. Yang, R.G. Bai, and W.J. Zhang: J. Clean. Prod., 2023, vol. 410, p. 137184.

    Article  CAS  Google Scholar 

  16. X.F. Luo, H. Dong, S. Zhang, and Y.W. Liu: Energy Sources Part A, 2018, vol. 17, pp. 1998–2008.

    Article  Google Scholar 

  17. Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 131–44.

    Article  CAS  Google Scholar 

  18. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Steel Res. Int., 2017, vol. 88, pp. 1–10.

    CAS  Google Scholar 

  19. W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu: Ironmak. Steelmak., 2021, vol. 48, pp. 33–39.

    Article  CAS  Google Scholar 

  20. Q.Q. Hu, R. Xin, X.D. Gao, Y. Wang, Y. You, Z.X. You, and X.W. Lv: Powder Technol., 2023, vol. 413, p. 118073.

    Article  CAS  Google Scholar 

  21. H.Y. Sun, A.A. Adetor, Z. Wang, F. Pan, and L. Li: ISIJ Int., 2016, vol. 56, pp. 936–43.

    Article  CAS  Google Scholar 

  22. H.Y. Sun, A.A. Adetoro, F. Pan, Z. Wang, and Q.S. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 1–10.

    Google Scholar 

  23. A.A. Adetoro, H.Y. Sun, S.Y. He, Q.S. Zhu, and H.Z. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 846–57.

    Article  Google Scholar 

  24. Y.C. Han: Northeast University Master's Thesis, 2020.

  25. Y.C. Han, Z.H. Dou, R. Zhang, T.A. Zhang, and S. Fang: J. Iron Steel Res. Int., 2023, https://doi.org/10.1007/s42243-023-01156-4.

    Article  Google Scholar 

  26. J. Zhang: Metallurgical Industry Press, 2007.

  27. X. Liu, J. Diao, Z.Q. Ke, T. Zhang, and B. Xie: Metall. Res. Technol., 2016, vol. 113, p. 407.

    Article  Google Scholar 

  28. S. Wang, Y.F. Guo, T. Jiang, F. Chen, and L.Z. Yang: JOM, 2019, vol. 71, pp. 323–28.

    Article  Google Scholar 

  29. S.S. Zhang, Z.Y. Wang, P. Hu, J.T. Rao, J.L. Zhang, and J. Pang: J. Mater. Res. Technol., 2022, vol. 19, pp. 4517–24.

    Article  CAS  Google Scholar 

  30. K. Hu, X.W. Lv, S.P. Li, W. Lv, B. Song, and K.X. Han: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1963–73.

    Article  Google Scholar 

  31. Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 155–61.

    Article  Google Scholar 

  32. Y.J. Wang, S.M. Wen, Q.C. Feng, J. Liu, and W.C. Ren: Trans. Nonferrous Metals Soc. China, 2016, vol. 9, pp. 2518–22.

    Article  Google Scholar 

  33. T. Shimoo, T. Isobe, S. Ando, and H. Kimura: J. Jpn. Inst. Metals Mater., 1986, vol. 50, pp. 168–75.

    Article  CAS  Google Scholar 

  34. M.Z. Wu, H.H. Lv, M.C. Liu, Z.L. Zhang, X.R. Wu, W.M. Liu, P. Wang, and L.S. Li: Hydrometallurgy, 2017, vol. 167, pp. 8–15.

    Article  CAS  Google Scholar 

  35. F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu: JOM, 2016, vol. 68, pp. 1–9.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. U1908225; 52074081), the Open Fund of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (Grant No. 2023P4FZG07A), the Fundamental Research Funds for Central Universities (Grant Nos. N2225012; N232405-06), and the Postdoctoral Foundation of Northeastern University (Grant Number 20230309).

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihe Dou or Ting-an Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Dou, Z., Yang, Z. et al. Mass Action Concentration Calculation and Experimental Study on Molten Vortex Direct Reduction of Vanadium–Titanium Magnetite. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03097-z

Navigation