Skip to main content
Log in

Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A complete critical evaluation of all available phase-diagram and thermodynamic data has been performed for all condensed phases of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system, and optimized model parameters have been found. The model parameters obtained for binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The modified quasi-chemical model for short-range ordering was used for the molten salt phase. Particularly in solutions with MgCl2 and KCl, RbCl, or CsCl, the calculations indicate a large dregree of ordering on the cationic sublattice, with Mg-Alkali second-nearest-neighbor pairs being favored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355–60.

    CAS  Google Scholar 

  2. H. Flood and J. Urnes: Z. Elektrochem., 1955, vol. 59, p. 834.

    CAS  Google Scholar 

  3. A.D. Pelton and W.T. Thompson: Can. J. Chem., 1970, vol. 48 (10), pp. 1585–97.

    Article  CAS  Google Scholar 

  4. G. Eriksson, P. Wu, M. Blander, and A.D. Pelton: Can. Met. Q., 1994, vol. 33, pp. 13–22

    CAS  Google Scholar 

  5. J. Sangster and A.D. Pelton: J. Phys. Chem. Ref. Data, 1987, vol. 16(3), pp. 509–61.

    Article  CAS  Google Scholar 

  6. J. Sangster and A.D. Pelton: J. Phase Equilibria, 1991, vol. 12 (5), pp. 511–37.

    CAS  Google Scholar 

  7. C. Robelin: Master’s Thesis, Ecole Polytechnique, Montreal, 1997.

    Google Scholar 

  8. I.F. Kravchuk, Z. Neorg. Khim., 1979, vol. 24 (10), pp. 2764–69.

    CAS  Google Scholar 

  9. C. Sandonnini: Atti Accad. Naz. Lincei, Classe Sci. Fiz., Mat. Nat., 1913, vol. 22 (5), p. 629.

    CAS  Google Scholar 

  10. A.L. Orekhova, N.P. Podlesnyak, I.I. Iyashevich, B.S. Kogan, and M.P. Borokova: Ivz. Vyssh. Ucheb., Zaved., Tsv. Metall., 1988, vol. 1, pp. 32–35.

    Google Scholar 

  11. O.J. Kleppa and F.G. McCarty: J. Phys. Chem., 1966, vol. 70 (4), pp. 1249–55.

    CAS  Google Scholar 

  12. Z. Szczygiel and T. Østvold: Acta Chem. Scand., 1971, vol. 25 (8), pp. 3019–23.

    CAS  Google Scholar 

  13. J.J. Egan and J. Bracker: J. Chem. Therm., 1974, vol. 6, pp. 9–16.

    Article  CAS  Google Scholar 

  14. C. Barnes and W.T. Thompson: Can. Met. Q., 1988, vol. 27 (4), pp. 267–76.

    CAS  Google Scholar 

  15. B. Sundman and J. Agren: J. Phys. Chem. Solid, 1981, vol. 42, pp. 297–301.

    Article  CAS  Google Scholar 

  16. O. Menge: Z. Anorg. Allg. Chem., 1911, vol. 72, pp. 162–70.

    Google Scholar 

  17. K. Matiasovsky: Chem. Z, 1959, vol. 13, p. 69.

    CAS  Google Scholar 

  18. G.A. Abramov: Metallurg (Moscow), 1935, vol. 6, p. 82.

    Google Scholar 

  19. K. Scholich: Neues Jahrb. Mineral., Geol., Palaontol., Beil., 1920, vol. 43, pp. 251–62.

    CAS  Google Scholar 

  20. E.I. Speranskaya: Ivz. Akad. Nauk SSSR, Ser. Khim., 1938, p. 463.

  21. W. Klemm and P. Weiss: Z. Anorg. Allg. Chem., 1940, vol. 245, pp. 279–84.

    Article  CAS  Google Scholar 

  22. K. Grjotheim, J.L. Holm, and M. Rotnes: Acta Chem. Scand., 1972, vol. 26 (9), pp. 3802–03.

    CAS  Google Scholar 

  23. H.-J. Seifert and G. Thiel: Z. Anorg. Allg. Chem., 1977, vol. 436, pp. 237–43.

    Article  CAS  Google Scholar 

  24. B.F. Markov, T.A. Tishura, and A.N. Budarina: Z. Khim. Ukr., 1981, vol. 47 (7), pp. 696–97.

    CAS  Google Scholar 

  25. L. Denielou, J.-P. Petitet, and C. Tequi: Rev. Gen. Therm. Fr., 1980, No. 220, pp. 303–09.

  26. T. Østvold: Acta Chem. Scand., 1969, vol. 23 (2), pp. 688–89.

    Google Scholar 

  27. T. Østvold: Ph. D. Thesis, Inst. Phys. Chem., Univ. Trondheim, 1971.

  28. D.E. Neil, H.M. Clark, and R.H. Wiswall: J. Chem. Eng. Data, 1965, vol. 10 (1), pp. 21–24.

    Article  CAS  Google Scholar 

  29. L. Karakaya and W.T. Thompson: J. Electrochem. Soc., 1986, vol. 133 (4), pp. 702–06.

    Article  CAS  Google Scholar 

  30. H. Ikeuchi and C. Krohn: Acta Chem. Scand., 1969, vol. 23, pp. 2230–40.

    CAS  Google Scholar 

  31. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651–59.

    CAS  Google Scholar 

  32. W. Klemm, K. Beyersdorfer, and J. Oryschkewirsch: Z. Anal. Chem., 1948, vol. 256, pp. 25–36.

    CAS  Google Scholar 

  33. G.S. Perry and H. Fletcher: J. Phase Equil., 1993, vol. 14 (2), pp. 172–78.

    CAS  Google Scholar 

  34. K. Arndt and H.H. Kunze: Z. Elektroch. Angew. Phys. Chem., 1912, vol. 18, p. 994.

    Google Scholar 

  35. A.I. Ivanov: Sbornik Statei Po Obshchei Khimii, Azd. AN SSSR. Moskva-Leningrad, 1953, vol. 1, p. 756.

    Google Scholar 

  36. J.L. Holm, B.J. Holm, B. Rinnan and F. Gronvold: J. Chem. Therm., 1973, vol. 5, pp. 97–106.

    Article  CAS  Google Scholar 

  37. W.K. Behl and J.J. Egan: J. Phys. Chem., 1967, vol. 71 (6), pp. 1764–69.

    Article  CAS  Google Scholar 

  38. H.J. Seifert, H. Fink, G. Thiel and J. Uebach: Z. Anorg. Allg. Chem., 1985, vol. 520, pp. 151–59.

    Article  CAS  Google Scholar 

  39. J.L. Holm: Acta Chem. Scand., 1973, vol. 27 (1), pp. 361–63.

    CAS  Google Scholar 

  40. J.L. Holm and F. Gronvold: Acta Chem. Scand., 1973, vol. 27, p. 370.

    CAS  Google Scholar 

  41. A.S. Dworkin and M.A. Bredig: J. Phys. Chem., 1960, vol. 64, p. 269.

    CAS  Google Scholar 

  42. K.K. Kelly: Contributions to the Data on Theoretical Metallurgy. XIII, U.S. Bur. Mines Bull., 1960, No. 584.

  43. T. Hattori, K. Igarashi, and J. Mochinaga: Bull. Chem. Soc. Jpn., 1981, vol. 54 (6), pp. 1883–84.

    Article  CAS  Google Scholar 

  44. B.F. Markov and I.D. Panchenko: Z. Obshchei Khim., 1955, vol. 25, p. 2042.

    Google Scholar 

  45. H.J. Seifert and G. Thiel: Thermochim. Acta, 1984, vol. 72, p. 11.

    Article  CAS  Google Scholar 

  46. B.R. Davis and W.T. Thompson: J. Electrochem. Soc., 1992, vol. 139 (4), pp. 989–95.

    Article  CAS  Google Scholar 

  47. N.P. Podlesnyak, E.V. Kantsler, A.I. Orekhova, T.A. Puzanova, and N.A. Krasil’nikova: Ivz. Vyssh Ucheb. Zaved., Tsv. Metall., 1991, vol. 2, pp. 24–27.

    Google Scholar 

  48. A.I. Orekhova, N.P. Podlesnyak, L.Kh. Kvznetsova, N.A. Krasil’nikova, and T.A. Puzanova: Ivz. Vyssh. Ucheb. Zaved., Isv. Metall., 1984, vol. 4, pp. 26–29.

    Google Scholar 

  49. B.R. Davis and W.T. Thompson: Can. Met. Q., 1995, vol. 34 (4), pp. 347–52.

    Article  Google Scholar 

  50. A.I. Orekhova, N.P. Podlesnyak, L.Kh. Kvznetsova, N.A. Krasil’nikova, and T.A. Puzanova: Ivz. Vyssh. Ucheb. Zaved., Tsv. Metall., 1982, vol. 4, pp. 50–54.

    Google Scholar 

  51. A.I. Orekhova, N.P. Podlesnyak, L.Kh. Kvznetsova, G.G. Arkhipov, and N.A. Krasil’nikova: Russ. J. Inorg. Chem., 1985, vol. 3 (3), pp. 30–31.

    Google Scholar 

  52. B.R. Davis: Ph.D. Thesis, Queen’s University, Kingston, ON, Canada, 1994.

    Google Scholar 

  53. M.A. Zakharchenko, V.A. Glaudschenko, and S.M. Aslanov: Z. Neorg. Khim., 1966, vol. 11 (10), p. 2408.

    CAS  Google Scholar 

  54. G. Grube and W. Rudel: Z. Anorg. Allg. Chem., 1924, vol. 133, p. 381.

    Article  Google Scholar 

  55. E.Y. Khardikova and L.V. Opredelenkova: Z. Neorg. Khim., 1982, vol. 27 (1), pp. 255–6.

    CAS  Google Scholar 

  56. I. Il’yasov, M. Davranov, and A.I. Rodionov: Z. Neorg. Khim., 1975, vol. 20 (7), pp. 1999.

    CAS  Google Scholar 

  57. M.S. Golubeva and A.G. Bergman: Z. Obshchei Khim., 1955, vol. 25, p. 462.

    Google Scholar 

  58. G.A. Bukhalova and A.S. Arabadzhan: Russ. J. Inorg. Chem., 1962, vol. 7 (9), pp. 1154–56.

    Google Scholar 

  59. K. Igarashi, H. Othani, and J. Mochinaga: Z. Naturforsch., 1987, vol. 42a, pp. 1421–24.

    Google Scholar 

  60. K. Nishihara and Y. Shimizu: J. Electrochem. Soc. Jpn. 1950, vol. 18 (6), p. 180.

    Google Scholar 

  61. V.E. Plyushchev, F.V. Kovalev and I.V. Shakhno: Z. Obshch. Khim., 1955, vol. 25, p. 357.

    Google Scholar 

  62. I.S. Morozov, Z.N. Shevtsova and L.V. Klyukina: Z. Neorg. Khim., 1957, vol. 2, p. 1639.

    CAS  Google Scholar 

  63. A. Seilveit and H. Flood: Acta Chem. Scand., 1958, vol. 12, p. 1030.

    Google Scholar 

  64. G.A. Bukhalova: Z. Neorg. Khim., 1959, vol. 4 (1), p. 121.

    Google Scholar 

  65. T. Hattori, H. Ikezawa, R. Hirano, and J. Mochinaga: Nippon Kagaku Kaishi, 1982, vol. 6, p. 925.

    Google Scholar 

  66. M.P. Borokova, A.I. Orekhova, K.A. Alekxandrov, and T.A. Puzanova: Izv. Vyssh. Ucheb. Zaved. Tsv. Metall., 1986, vol. 4, pp. 56–59.

    Google Scholar 

  67. Z. Qiao, D. Ailing, M. Wenjing, Z. Jinbiao, W. Mingsheng, Z. Chaogui, and D. Shuzen: Rare Metals, 1989, vol. 8 (1), p. 9.

    CAS  Google Scholar 

  68. F.C. Landsberry and R.A. Page: J. Soc. Chem. Ind., 1920, vol. 39, pp. 37–40.

    Google Scholar 

  69. P. Sem, G. Hatem, J.P. Bros and M. Gaune-Escard: J. Chem. Soc., Faraday Trans. I, 1984, vol. 80, pp. 297–308.

    Article  CAS  Google Scholar 

  70. V.E. Plyushchev and F.V. Kovalev: Z. Neorg. Khim., 1956, vol. 1, p. 1016.

    Google Scholar 

  71. E.P. Dergunov and A.G. Bergman: Dokl. Akad. Nauk SSSR, 1950, vol. 75 (6) pp. 815–17.

    CAS  Google Scholar 

  72. B.G. Korshunov, Y.G. Podzolko, V.Y. Kerner, and S.A. Krishtul: Izv. Vyssh. Ucheb. Zaved., Tsv. Metall., 1975, No. 5, pp. 147–49.

  73. R.P. Clark and F.W. Reinhardt: Thermochem. Acta, 1975, vol. 12, pp. 309–14.

    Article  CAS  Google Scholar 

  74. H.H. Emons, G. Brautigam, and R. Thomas: Chem. Z., 1978, vol. 32 (6), pp. 721–33.

    CAS  Google Scholar 

  75. G.D. Robbins, T. Førland, and T. Østvold: Acta Chem. Scand., 1968, vol. 22, pp. 3002–12.

    CAS  Google Scholar 

  76. I.V. Shakno and V.E. Plyushchev: Russ. J. Inorg. Chem., 1960, vol. 5 (5), pp. 563–64.

    Google Scholar 

  77. S.D. Gromakov: Z. Fiz. Khim., 1950, vol. 24, p. 641.

    CAS  Google Scholar 

  78. V.M. Burlakova and G.A. Bukhalova: Z. Neorg. Khim., 1968, vol. 13 (9), pp. 2539–41.

    CAS  Google Scholar 

  79. V.E. Plyushchev, L.N. Komissarova, L.V. Meshchaninova, and L.M. Akulkina: Z. Neorg. Khim., 1956, vol. 1, pp. 822–30.

    Google Scholar 

  80. G.A. Bukhalova and A.S. Arabadzhan: Z. Neorg. Khim., 1962, vol. 7 (9), p. 2230.

    CAS  Google Scholar 

  81. D.V. Sementsova and G.A. Bukhalova, Russ. J. Inorg. Chem., 1967, vol. 12 (6), pp. 867–69.

    Google Scholar 

  82. D.V. Sementsova and G.A. Bukhalova, Russ. J. Inorg. Chem., 1966, vol. 11 (1), pp. 89–93.

    Google Scholar 

  83. V.E. Plyushchev, I.V. Shakhno, and S.A. Pozhitkova: Z. Obshchei Khim., 1955, vol. 25, p. 1073.

    Google Scholar 

  84. K. Grjotheim, J.L. Holm ans J. Malmo: Acta Chem. Scand., 1970, vol. 24, p. 77.

    Article  CAS  Google Scholar 

  85. A.I. Ivanov: Izv. Sekt. Fiz.-Khim. Anal., Inst. Obshchei Neorg. Khim., Akad. Nauk SSSR, 1953, vol. 23, pp. 189–97.

    CAS  Google Scholar 

  86. I. Karakaya and W.T. Thompson: J. Chem. Thermodyn., 1986, vol. 18, pp. 859–66.

    Article  CAS  Google Scholar 

  87. I. Karakaya and W.T. Thompson: Can. Metall. Q., 1986, vol. 25, pp. 307–17.

    CAS  Google Scholar 

  88. J. Zhu, I. Karakaya and W.T. Thompson: J. Electrochem. Soc., 1988, vol. 35 (1), pp. 122–6.

    Article  Google Scholar 

  89. A.A. Maurits, Zh. Prikl. Khim., 1971, vol. 44 (7), p. 1650.

    CAS  Google Scholar 

  90. O. Wallevik, Porsgrunn Research Center, Norsk Hydro ASA, Norway, private communication, 1999.

  91. I. Barin, O. Knacke, and O. Kubaschewski: Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977.

    Google Scholar 

  92. D.R. Stull and H. Prophet, JANAF Thermochemical Tables, United States Department of Commerce, Washington, DC, 1985.

    Google Scholar 

  93. A.D. Pelton, C.W. Bale and W.T. Thompson: F*A*C*T (Facility for the Analysis of Chemical Thermodynamics), Ecole Polytechnique, Montreal, 2000, http://www.crct.polymtl.ca.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pelton, A.D., Chartrand, P. Thermodynamic evaluation and optimization of the LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2 system using the modified quasi-chemical model. Metall Mater Trans A 32, 1361–1383 (2001). https://doi.org/10.1007/s11661-001-0227-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0227-2

Keywords

Navigation