Skip to main content
Log in

Recent Progress in Hydrometallurgical Processing of Nickel Lateritic Ore

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

With the growth of the stainless-steel industry, the focus has moved toward making specialized steels, where Ni has proved itself as a significant ingredient. With time, Ni demand has inclined toward the energy storage sector. Observing the drastic application in several areas, Ni demand has grown multi-fold in recent years. Ni requirement was conventionally being fulfilled by the high-grade sulfidic ores, which have been facing scarcity issues for quite a long time. These issues may get suitably addressed with the introduction of lateritic ores. Lateritic ore contributes to 70% of total nickel resources. However, due to its low grades, and comparatively higher impurity constituents, it requires specific preprocessing steps prior to utilization. The present article reviews the insight into the available hydrometallurgical approaches for treating laterite ores and the separation of nickel and cobalt from hydrometallurgy routes. Caron process, a combination of pyrometallurgy and hydrometallurgy, is also well described in the review. Mineralogy aspects and the spatial distribution of laterites ore play an essential role in selecting the best-suited hydrometallurgical route, which is also discussed. The work has introduced a novel attempt where the ore genesis, corresponding hydrometallurgical processing, and the relatable post-leaching treatment are collated for better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

MHP:

Mixed hydroxide of nickel and cobalt

MSP:

Mixed sulfide precipitate of nickel and cobalt

HPAL:

High pressure acid leaching

AL:

Atmospheric acid leaching

HL:

Heap leaching

DNi:

Direct nickel

NAPL:

Nitric acid pressure leaching

SS:

Stainless steel

PAL:

Phosphoric acid leaching

INSG:

International nickel study group

HEVs:

Hybrid electric vehicles

Wt.:

Weight

HAL:

Hydrochloric acid leaching

NAL:

Nitric acid leaching

STAC:

Stearyl trimethyl ammonium chloride

BNC:

Basic nickel carbonate

Mt:

Million tonnes

MT:

Metric ton

References

  1. International Nickel Study Group – The International Nickel Study Group (INSG), [Online]. Available: https://insg.org/ [Accessed: 2022-08-07]

  2. “Nickel Institute,” [Online]. Available: https://nickelinstitute.org/about-nickel/plating/. [Accessed 10 Nov 2021].

  3. Nickel: Market Outlook to 2018, Roskill, London, 2014.

  4. Stopić SR, & Friedrich BG, Hydrometallurgical processing of nickel lateritic ores, Vojnotehnički glasnik/Military Technical Courier, no. 4, 64(2016) 1033-47.

    Article  Google Scholar 

  5. Kursunoglu S, Ichlas ZT, & Kaya M, Leaching method selection for Caldag lateritic nickel ore by the analytic hierarchy process (AHP), Hydrometallurgy, 171(2017) 179-84.

    Article  CAS  Google Scholar 

  6. Gultom, T, & Sianipar A, High pressure acid leaching: a newly introduced technology in Indonesia, In IOP Conference Series: Earth and Environmental Science, no. 1, 413(2020) 012015.

    Google Scholar 

  7. Nasab MH, Noaparast M, & Abdollahi H, Selective precipitation of iron from multi-element PLS produced by atmospheric leaching of Ni-Co bearing laterite, International Journal of Mining and Geo-Engineering (2022). https://doi.org/10.22059/ijmge.2022.307768.594861

  8. Safitri N, Mubarok MZ, Meidji IU, Hardi J, Jayadi H. Leaching of limonitic nickel from Sorowako with sulfuric acid at atmospheric pressure. InJournal of Physics: Conference Series, no. 1, 1763(2021) 012044.

    CAS  Google Scholar 

  9. Ilyas S, Srivastava RR, Kim H, Ilyas N, Sattar R. Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Separation and Purification Technology, 232(2020)115971.

    Article  CAS  Google Scholar 

  10. He F, Ma B, Wang C, Chen Y, Mineral evolution and porous kinetics of nitric acid pressure leaching limonitic laterite, Minerals Engineering, 181(2022) 107544.

    Article  CAS  Google Scholar 

  11. Alvial-Hein G, Mahandra H, Ghahreman A, Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique:A review, Journal of Cleaner Production, 297(2021)126592.

    Article  CAS  Google Scholar 

  12. Oxley A, Smith ME & Caceres O, Why heap leach nickel laterites?, Minerals Engineering, 88 (2016) 53-60.

    Article  CAS  Google Scholar 

  13. Nickel Sulfate: Outlook to 2029, 3rd edition,” Roskill, London.

  14. Shah K, “Indian Stainless Steel Industry–Overview & Latest Updates”.

  15. [Online]. Available: https://nickelinstitute.org/about-nickel/copper-nickel-alloys/. [Accessed 10 11 2021].

  16. Whittington BI & Muir D, Pressure Acid Leaching of Nickel Laterites: A Review, Mineral Processing and Extractive Metallurgy Review, no. 6, 21 (2008) 527–599.

    Google Scholar 

  17. Moskalyk RR & Alfantazi AM, Nickel laterite processing and electrowinning practice, Minerals Engineering, no. 8, 15 (2002) 593-605.

    Article  Google Scholar 

  18. Boldt Jr JR & Queneau P, The Winning of Nickel, London, (1967) 7.

  19. [Online]. Available: https://www.statista.com/statistics/273634/nickel-reserves-worldwide-by-country/. [Accessed 11 Nov 2021].

  20. Elias M, Nickel laterite deposits-geological overview, resources and exploitation, Giant ore deposits: Characteristics, genesis and exploration. CODES Special Publication, 4 (2002) 205-220

  21. “Mineral commodities summary,” US Geological Survey, January 2021.

  22. Mudd GM & Jowitt SM, A detailed assessment of global nickel resource trands and endowments, Economic Geology, 109 (2014) 1813-1841.

    Article  CAS  Google Scholar 

  23. “Ifp energies nouvelles,” [Online]. Available: https://www.ifpenergiesnouvelles.com/article/nickel-energy-transition-why-it-called-devils-metal. [Accessed 28 March 2022].

  24. Nurjaman F, Astuti W, Bahfie F & Suharno B, Study of selective reduction in lateritic nickel ore: Saprolite versus limonite, Materials today: Proceedings, no. 1, 44 (2021) 1488-1494.

    Google Scholar 

  25. McDonald RG & Whittington BI, Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies, Hydrometallurgy, no. 1-4, 91 (2008) 35-55.

    Article  Google Scholar 

  26. Norgate T & Jahanshahi S, Assessing the energy and greenhouse gas footprints of nickel laterite processing, Minerals Engineering, no. 7, 24 (2011) 698-707.

    Article  Google Scholar 

  27. Rhamdhani MA, Chen J, Hidayat T, Jak E & Hayes P, Advances in research on nickel production through the Caron process, Proceedings of EMC, (2009).

    Google Scholar 

  28. Ma B, Wang C, Yang W, Yang B & ZhangY, Selective pressure leaching of Fe (II)-rich limonitic laterite ores from Indonesia using nitric acid, Minerals Enginnering, 45 (2013) 151-158.

    Article  CAS  Google Scholar 

  29. McCarthy F & McDonald R, Woodbridge G, Brock G & Robinson D, Iron hydrolysis in the direct nickel process, 28th International Mineral Processing Congress, (2016)

  30. Carter RA, Leaching Laterites: Two New Processes Make Progress, Engineering and Mining Journal 215, 7 (2014) 86

    Google Scholar 

  31. Sist C & Demopoulos GP, Nickel hydroxide precipitation from aqeous sulfate media, The Journal of The Minerals, Metals & Metarials Society, 55 (2003) 42-46.

    Article  CAS  Google Scholar 

  32. Oustadakis P, Agatzini-Leonardou S & Tsakirdis PE, Nickel and cobalt precipitation from sulphate leach liquor using MgO pulp as neutralizing agent, Minerals Engineering, no. 11, 19 (2006) 1204-1211.

    Article  Google Scholar 

  33. Basturkcu H, Acarkan N & Gock E, The role of mechanical activation on atmospheric leaching of a lateritic nickel ore, International Journal of Mineral Processing, 163 (2017) 1-8.

    Article  CAS  Google Scholar 

  34. Khoo JZ, Haque N, Woodbridge G, McDonald R & Bhattacharya S, A life cycle assessment of a new laterite processing technology, Journal of Cleaner Production, no. 4, 142 (2017) 1765-1777.

    Article  Google Scholar 

  35. KURŞUNOGLU S, Extraction of nickel from a mixed nickel-cobalt hydroxide precipitate, Bilimsel Madencilik Dergisi, no. 1, 58(2019) 45-52.

    Article  Google Scholar 

  36. McCarthy F & Brock G, Direct Nickel Test Plant Program: 2013 in Review, in ALTA 2014 NICKEL/COBALT/COPPER CONFERENCE, Perth, Australia, (2014).

  37. Buyukakinci E & Topkaya YA, Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching, Hydrometallurgy, no. 1-2, 97 (2009) 33-38.

    Article  Google Scholar 

  38. Kursunoglu S, Extraction of nickel from a mixed nickel-cobalt hydroxide precipitate, Madencilik, no. 1, 58 (2019) 45-52.

    Article  Google Scholar 

  39. Thubakgale CK, Mbaya RK & Kabongo K, A study of atmospheric acid leaching of a South African nickel laterite, Minerals Engineering, 54 (2013) 79-81.

    Article  CAS  Google Scholar 

  40. Wang B, Guo Q, Wei G, Zhang P, Qu J & Qi T, Characterization and atmospheric hydrochloric acid leaching of a limonitic laterite from Indonesia, Hydrometallurgy, 129-130 (2012) 7-13.

    Article  Google Scholar 

  41. Zhang P, Sun L, Wang H, Cui J & Hao J, Surfactant-assistant atmospheric acid leaching of laterite ore for the improvement of leahcing efficiency of nickel and cobalt, Cleaner production, (2019) 1-7.

    Article  CAS  Google Scholar 

  42. Luo J, Li G, Rao M, Peng Z, Zhang Y & Jiang T, Atmospheric leaching characteristics of nickel and iron in limonitic laterite with sulfuric acid in the presence of sodium sulfite, Minerals Engineering, 78 (2015) 38-44.

    Article  CAS  Google Scholar 

  43. Li G, Rao M, Jiang T, Huang Q & Peng Z, Leaching of limonitic laterite ore by acidic thiosulfate solution, Minerals Engineering, no. 8, 24 (2011) 859-863.

    Article  Google Scholar 

  44. Agatzini-Leonardou S & Dimaki D, Heap leaching of poor nickel laterites by sulfuric acid at ambient temperature, Hydrometallurgy, (1994) 193-208.

    Book  Google Scholar 

  45. Ucyildiz A, Girgin I, High pressure sulphuric acid leaching of lateritic nickel ore. Physicochemical Problems of Mineral Processing, no. 1, 53(2017) 475-88.

    Google Scholar 

  46. Rubisov DH, Krowinkel JM & Papangelankis VG, Sulphuric acid pressure leaching of laterites — universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends, Hydrometallurgy, no. 1, 58 (2000) 1-11.

    Article  Google Scholar 

  47. Whittington BI, Johnson JA, Quan LP, McDonald RG & Muir DM, Pressure acid leaching of arid-region nickel laterite orePart II. Effect of ore type, Hydrometallurgy, 70 (2003) 47-62.

    Article  CAS  Google Scholar 

  48. Chou EC, Queneau PB & Rickard RS, Sulfuric acid pressure leaching of nickeliferous limonites, Metallurgical Transactions B, 8 (1977) 547-554.

    Article  Google Scholar 

  49. “Caldera Engineering,” [Online]. Available: https://www.calderaengineering.com/industries-served/high-pressure-acid-leach-and-pressure-oxidation/high-pressure-acid-leach#:~:text=High%20Pressure%20Acid%20Leach%20(HPAL,cobalt%20from%20the%20laterite%20ore.. [Accessed 21 March 2022].

  50. Xue-yi G, Wen-tang S & Qing-hua T, Leaching behavior of metals from limonitic lateritic ore by high pressure acid leaching, Nonferrous Metals Society of China, (2011) 191-195.

    Article  Google Scholar 

  51. Georgiou D & V. Papangelakis, Sulphuric acid leaching of limonitic laterite: chemistry and kinetics, Hydrometallurgy, (1998) 23-46.

    Article  CAS  Google Scholar 

  52. Das GK, Anand S, Acharya S & Das RP, Characterization and acid pressure leaching of various nickel-bearing chromite overburden samples, Hydrometallurgy, no. 1-2, 44 (1997) 97-111

    Article  Google Scholar 

  53. Johnson JA, Cashmore BC & Hockridge RJ, Optimization of nickel extraction from laterite ores by highpressure acid leaching with addition of sodium sulphate, Minerals Engineering, (2005) 1297-1303.

    Article  CAS  Google Scholar 

  54. Loveday BK, The use of oxygen in high pressure acid leaching of nickel laterites, Minerals engineering, (2008) 533-538.

    Article  CAS  Google Scholar 

  55. Basturkcu H & Acarkan N, Leaching behaviour of a Turkish Lateritic ore in the presence of additives, Physicochemical Problem of Mineral Processing, no. 1, 52 (2016) 112-123.

    Google Scholar 

  56. Chang Y, Zhao K & Pešić B, Selective leaching of nickel from prereduced limonitic laterite under moderate HPAL conditions- Part I: Dissolution, Journal of Mining and Metallurgy, Section B: Metallurgy, no. 2, 52 (2016) 127-134.

    Article  Google Scholar 

  57. de Bakker J, LaMarre J, Papangelakis V, Davis B, HCl leaching and acid regeneration using MgCl2 brines and molten salt hydrates, Proceedings of The Minerals, Metals & Materials Society (TMS), (2011) Feb:521–8.

  58. Lakshmanan VI, Sridhar R, DeLaat R, Chen J, Halim MA, Roy R, Extraction of nickel, cobalt and iron from laterite ores by mixed chloride leach process, InNi-Co 2013, Springer, Cham (2013) 97-106

  59. Li G, Zhou Q, Zhu Z, Luo J, Rao M, Peng Z & Jiang T, Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite, Journal of Cleaner Production, 189 (2018) 620-626.

    Article  CAS  Google Scholar 

  60. Sukla LB & Panchanadikar V, Bioleaching of lateritic nickel ore using a heterotrophic micro-organism, Hydrometallurgy, 32 (1993) 373-379.

    Article  CAS  Google Scholar 

  61. Mohapatra S, Bohidar S, Pradhan N, Kar RN & Sukla LB, Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains, Hydrometallurgy, no. 1, 85 (2007) 1-8.

    Article  Google Scholar 

  62. Behera SK, Panda SK, Pradhan N, Sukla LB & Mishra BK, Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India, Bioresource Technology, 125 (2012) 17-22.

    Article  CAS  Google Scholar 

  63. Biswas S, Dey R, Mukherjee S & Benerjee PC, Bioleaching of Nickel and Cobalt from Lateritic Chromite Overburden Using the Culture Filtrate of Aspergillus niger, Applied Biochemistry and Biotechnology, 170 (2013) 1547-1559.

    Article  CAS  Google Scholar 

  64. Biswas S, Chakraborty S, Chaudhary M, Banerjee MG … & Dey R, Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids, Journal of Chemical Technology & Biotechnology, no. 10, 89 (2014) 1491-1500.

    Article  CAS  Google Scholar 

  65. Bohidar S, Mohapatra S & Sukla LB, Nickel recovery from chromite overburden of Sukinda using fungal strains, International Journal of Intergrative Biology, no. 2, 5 (2009) 103-107.

    Google Scholar 

  66. Behera SK, Panda PP, Singh S, Pradhan N …. & Mishra BK, Study on reaction mechanism of bioleaching of nickel and cobalt form lateritic chromite overburdens, International Biodeterioration and Biodegradation, no. 7, 65 (2011) 1035-1042.

    Article  CAS  Google Scholar 

  67. Behera SK & Sukla LB, Microbial extraction of nickel from chromite overburdens in the presence of surfactant, Transactions of Nonferrous Metals Society of China, no. 11, 22 (2012) 2840-2845.

    Article  Google Scholar 

  68. Esther J, Panda S, Behera SK, Sukla LB, Pradhan N & Mishra BK, Effect of dissimilatory Fe(III) reducers on bio-reduction and nickel–cobalt recovery from Sukinda chromite-overburden, Bioresource Technology, 146 (2013) 762-766.

    Article  CAS  Google Scholar 

  69. Biswas S, Samanta S, Dey R, Mukherjee S & Benerjee PC, Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using Aspergillus niger, International Journal of Minerals, Metallurgy, and Materials, no. 8, 20 (2013) 705-712.

    Article  CAS  Google Scholar 

  70. Valix M, Usai F & Malik V, Fungal bio-leaching of low grade lateritic ores, Minerals Engineering, no. 2, 14 (2001) 197-203.

    Article  CAS  Google Scholar 

  71. Le L, Tang J, Ryan D & Valix M, Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism, Minerals Engineering, no. 12, 19 (2006) 1259-1265.

    Article  CAS  Google Scholar 

  72. Tzeferis PG, Leaching of a low grade hematitic laterite ore using fungi and biologically produced acid metabolites, International Journal of Mineral Processing, no. 3-4, 42 (1994) 267-283.

    Article  CAS  Google Scholar 

  73. De Graff JE, The treatment of lateritic nickel ores — a further study of the Caron process and other possible improvements. Part I. Effect of reduction conditions, Hydrometallurgy, no. 1, 5 (1979) 47-65.

    Article  Google Scholar 

  74. Safitri N, Mubarok Z, Winarko R & Tangela Z, Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization, AIP conference proceedings 1964, 2018.

  75. Mubarok MZ & Lieberto,a* J, Precipitation of Nickel Hydroxide from Simulated and Atmospheric-Leach Solution of Nickel Laterite Ore, Procedia Earth and Planetary Science, (2013) 457-464.

    Article  CAS  Google Scholar 

  76. Williams C, Hawker W, Vaughan JW, Selective leaching of nickel from mixed nickel cobalt hydroxide precipitate, Hydrometallurgy, 138(2013) 84-92.

    Article  CAS  Google Scholar 

  77. Virnig MJ & MacKenzie MJ, Process for the recovery of nickel, US Patent, 5,976,218 (1999).

  78. Price MJ and Reid JG, Separation and recovery of nickel and cobalt in ammoniacal systems, US Patent, 5,174,812 (1992).

  79. Donegon S, Direct solvent extraction of nickel at Bulong operations,” Minerals Engineering,19 (2006) 1234-1245.

    Article  Google Scholar 

  80. Dreisinger DB & Cooper WC, The solvent extraction separation of cobalt and nickel using 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester, Hydrometallurgy, no. 1, 12 (1984) 1-20.

    Article  Google Scholar 

  81. Hatch WR, Cobalt ion echange process, U.S. Patent, 4,042,665 (1977).

  82. Suetsuna A & Lio T, Process for separating and recovering nickel and cobalt, US Patent, US4004990 (1974)

  83. Owusu G, Oxidation-precipitation of Co from Zn-Cd-Co-Ni sulphate solution using Caro's acid, Hydrometallurgy, no. 1, 48 (1998) 91-9.

    Article  CAS  Google Scholar 

  84. Nishimura T & Umetsu Y, Separation of cobalt and nickel by ozone oxidation, Hydrometallurgy, no. 1-3, 30 (1992) 483-497.

    Article  CAS  Google Scholar 

  85. Jebbink P, Stefan R, Neff D & Tomlinson M, Expanding the cobalt recovery circuit at the Thompson nickel refinery, The Journal of The Minerals, Metals & Materials Society, no. 10, 58 (2006) 37-42.

    Article  CAS  Google Scholar 

  86. Van den Steen J, Kalala Polloni B & Shungu T, Developmnet of cobalt sulfate solution purification by sulfides precipitation, The Metallurgy Society, (1988) 493-504.

  87. Boldt Jr. JR & Queneau P (Ed.), The winning of nickel, Longmans Canada Limited, Toronto, (1967) 290-387.

    Google Scholar 

  88. Chaudhary AJ, Donaldson JD, Grimes SM, Yasri NG, Separation of nickel from cobalt using electrodialysis in the presence of EDTA, Journal of Applied Electrochemistry, no.4, 30(2000) 439-45.

    Article  CAS  Google Scholar 

  89. Cheng CY, Boddy G, Zhang W, Godfrey M …& Wang W, Recovery of nickel and cobalt from laterite leach solutions using direct solvent extraction: Part 1—selection of a synergistic SX system, Hydrometallurgy, no.1,104(2010) 45-52.

    Article  CAS  Google Scholar 

  90. Agacayak T, Zedef V, Leaching of a Turkish lateritic nickel ore in nitric acid solution. In Mine Planning and Equipment Selection, Springer, Cham (2014) 1039-1045.

    Book  Google Scholar 

  91. Agacayak T, Zedef V, Aras A, Kinetic study on leaching of nickel from Turkish lateritic ore in nitric acid solution, Journal of Central South University, no. 1 23(2016) 39-43.

    Article  CAS  Google Scholar 

  92. Agatzini-Leonardou S, Oustadakis P, Dimaki D, Zafiratos J …& Drougas J, Heap Leaching of Greek Low-Grade Nickel Oxide Ores by Dilute Sulphuric Acid at a Pilot-Plant Scale, Materials Proceedings, no. 1,5(2021) 65.

    Google Scholar 

  93. MacCarthy J, Addai-Mensah J & Nosrati A, Atmoshperic acid leaching of siliceuos goethitic Ni laterite ore: Effect of solid loading and temperature, Minerals engineering, 69 (2014) 154-164..

    Article  CAS  Google Scholar 

  94. Ma B, Yang W, Yang B, Wang C & Zhang Y, Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores, Hydrometallurgy, 155 (2015) 88-94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of Tata Steel Ltd., Jamshedpur, for the support and permission to publish this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Tripathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N., Tripathy, S.K., Patra, S.K. et al. Recent Progress in Hydrometallurgical Processing of Nickel Lateritic Ore. Trans Indian Inst Met 76, 11–30 (2023). https://doi.org/10.1007/s12666-022-02706-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02706-2

Keywords

Navigation