Skip to main content
Log in

Optimization of Basicity of High Ti Slag for Efficient Smelting of Vanadium Titanomagnetite Metallized Pellets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Slag basicity (mass ratio of CaO to SiO2) is an important index to ensure smooth operation and efficient separation between the metal and slag within the metallurgical industry. Effects of basicity of the high titanium slag on the recovery of iron and vanadium, the separation behaviors between iron and slag, as well as the slag foaming behavior during the smelting process with the operating temperature of 1550 °C have been experimentally investigated. The results show that the recovery ratios of iron and vanadium increase with higher slag basicity. The amount of dispersed metallic iron droplets in the slag decreases sharply when the basicity increases from 0.5 to 0.8, then decreases slowly when the basicity is from 0.8 to 1.1. Furthermore, the perovskite (CaTiO3) phase appears when the basicity is above 0.8. The foaming height is at a high level when the basicity is from 0.5 to 0.6, then it decreases when the basicity is increased from 0.6 to 0.7, whereas it slowly increases with higher slag basicity. Finally, the optimum basicity range of titanium slag for efficient smelting of vanadium titanomagnetite is proposed to be 0.8 to 1.1 by considering the combined effects on the recovery, foaming, and minimization on the retention of the metal droplets within the slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.G. Du: Principle of blast furnaces smelting vanadium-titanium magnetite, Science Press, Beijing, 1996, pp. 1-17.

    Google Scholar 

  2. F. Zheng, F. Chen, Y. Guo, T. Jiang, A. Y. Travyanov, and G. Qiu: JOM, 2016, vol. 68, pp. 1476-84.

    Article  CAS  Google Scholar 

  3. X. Lv, Z. Lun, J. Yin, and C. Bai: ISIJ Int., 2013, vol. 53, pp. 1115-19.

    Article  CAS  Google Scholar 

  4. E. Wu, R. Zhu, S. L. Yang, L. Ma, J. Li, and J. Hou: J. Iron Steel Res. Int., 2016, vol. 23, pp. 655-60.

    Article  Google Scholar 

  5. J. Tang, M. S. Chu, Z. W. Ying, F. Li, C. Feng, and Z. G. Liu: Metals, 2017, vol. 7, p. 153.

    Article  Google Scholar 

  6. S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, and M. Tang: JOM, 2017, vol. 69, pp. 1646-53.

    Article  CAS  Google Scholar 

  7. W. S. Steinberg and P. C. Pistorius: Ironmak. Steelmak., 2013, vol. 36, pp. 500-04.

    Article  Google Scholar 

  8. V. E. Roshchin, A. V. Asanov, and A. V. Roshchin: Russ. Metall., 2011, vol. 2011, pp. 499-508.

    Article  Google Scholar 

  9. A. N. Dmitriev, O. Y. Sheshukov, G. I. Gazaleeva, Y. A. Chesnokov, E. V. Bratygin, I. V. Nekrasov, and G. Y. Vitkina: Appl. Mecha. Mater., 2014, vol. 670-671, pp. 283-89.

    Article  Google Scholar 

  10. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang: JOM, 2019, vol. 71, pp.1858-65.

    Article  CAS  Google Scholar 

  11. G.Q. Fu, W. Li, M.S. Chu, M.Y. Zhu: Metall. Mater. Trans. B, 2020, vol. 51, pp.114-23.

    Article  Google Scholar 

  12. X.H. Li, J. Kou, T.C. Sun, X.S. Guo, Y.C. Tian: Miner. Process. Extr. Metall. Rev., 2019, https://doi.org/10.1080/08827508.2019.1702039.

    Article  Google Scholar 

  13. W.D. Tang, S.T. Yang, G.J. Cheng, Z.X. Gao, X.X. Xue: Steel Res. Int., 2018, vol. 89, pp. 1800226.

    Article  Google Scholar 

  14. G.H. Zhang, Y.L. Zhen, and K.C. Chou: ISIJ Int., 2015, vol. 55, pp. 922-27.

    Article  CAS  Google Scholar 

  15. T. Jiang, S. Wang, Y. Guo, F. Chen, and F. Zheng: Metals, 2016, vol. 6, p. 107.

    Article  Google Scholar 

  16. J. Tang, M. Chu, C. Feng, Y. Tang, and Z. Liu: ISIJ Int., 2016, vol. 56, pp. 210-19.

    Article  CAS  Google Scholar 

  17. S. Wang, M. Chen, Y.F. Guo, T. Jiang, B.J. Zhao: JOM, 2019, vol. 71, pp.1144-49.

    Article  CAS  Google Scholar 

  18. S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, L.Z. Yang, M.J. Tang: JOM, 2019, vol. 71, pp.323-28.

    Article  CAS  Google Scholar 

  19. M. Chen, X. Hou, J. Chen, and B. Zhao: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1690-96.

    Article  Google Scholar 

  20. M. Chen, B. Zhao, and J. Smialek: J. Am. Ceram. Soc., 2013, vol. 96, pp. 3631-36.

    Article  CAS  Google Scholar 

  21. X.H. Huang: Principles of Iron and Steel Metallurgy, 4th ed., Metallurgical Industry Press, Beijing, 2013, pp. 296–454.

    Google Scholar 

  22. J. L. Liao, J. Li, X. D. Wang, and Z. T. Zhang: Ironmak. Steelmak., 2013, vol. 39, pp. 133-139.

    Article  Google Scholar 

  23. J. Van der Colf and D. D. Howat: J. S. Afr. Inst. Min. Metall., 1979, vol. 79, pp. 255-63.

    Google Scholar 

  24. Z. Yan, X. Lv, W. He, and J. Xu: ISIJ Int., 2017, vol. 57, pp. 31-36.

    Article  CAS  Google Scholar 

  25. S. M. Kramer, I. G. Gorichev, Yu. A. Lainer, I. V. Artamonova and M. V. Terekhova: Russ. Metall., 2014, vol.2014, pp.704–707.

    Article  Google Scholar 

  26. S. A. C. Stadler, J. J. Eksteen, and C. Aldrich: Miner. Eng., 2007, vol. 20, pp. 1121-28.

    Article  CAS  Google Scholar 

  27. H. S. Kim, D. J. Min, and J. H. Park: ISIJ Int., 2001, vol. 41, pp. 317-24.

    Article  CAS  Google Scholar 

  28. Q. Meng, X. Hong, X. Qiu, M. Zhang, and Q. Li: J. Iron Steel Res., 2007, vol. 19, pp. 16-20.

    CAS  Google Scholar 

  29. J. Qi: Res. Iron Steel, 2014, vol. 42, pp. 17-21.

    CAS  Google Scholar 

  30. B. Bhoi, A. K. Jouhari, H. S. Ray, and V. N. Misra: Ironmak. Steelmak., 2006, vol. 33, pp. 245-52.

    Article  CAS  Google Scholar 

  31. L. Hong, M. Sano, and M. Hirasawa: Ironmak. Conf. Proc., 1998, vol. 57, pp. 1403-05.

    CAS  Google Scholar 

  32. K. Sun, S. Zheng, X. Hao, Y. Gong, and D. Wang: J. Iron Steel Res., 2012, vol. 24, pp. 16-19.

    Google Scholar 

  33. X. Dong, H. Sun, X. She, Q. Xue, and J. Wang: Ironmak. Steelmak., 2013, vol. 41, pp. 99-106.

    Article  Google Scholar 

  34. O. P. Jha, S. N. Sinha, and A. Chatterjee: Trans. Indian Inst. Met., 1995, vol. 48, pp. 107-13.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ50816). The authors acknowledge the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland, for providing facilities and scientific and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufeng Guo or Fuqiang Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 13 October 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guo, Y., Zheng, F. et al. Optimization of Basicity of High Ti Slag for Efficient Smelting of Vanadium Titanomagnetite Metallized Pellets. Metall Mater Trans B 51, 945–952 (2020). https://doi.org/10.1007/s11663-020-01822-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01822-y

Navigation