Skip to main content
Log in

Reduction Behaviors of Iron, Vanadium and Titanium Oxides in Smelting of Vanadium Titanomagnetite Metallized Pellets

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The complicated reduction behaviors of iron, vanadium and titanium oxides must be accurately controlled for the successful smelting of vanadium titanomagnetite. The aim of this study is to investigate the effects of the binary basicity, MgO content, smelting temperature, duration and reductants on the reduction of iron, vanadium and titanium oxides during the electric furnace smelting of vanadium titanomagnetite metallized pellets. The results demonstrate that the recovery ratios of both iron and vanadium increase as the binary basicity increases from 0.9 to 1.2, whereas the reduction of titanium oxides is mitigated when the basicity is maintained at 1.1. Compared to its weak effect on the recovery ratio of iron, increasing MgO content improves the vanadium recovery ratio. A low content of titanium in molten iron is obtained when the MgO content in the slag is lower than 11%, whereas the titanium content in the molten iron increases as the MgO content increases further. Moreover, the iron and vanadium recovery ratios, and the Ti content in the molten iron, increase with increasing smelting temperature, duration and reductant content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).

    Article  Google Scholar 

  2. Y.F. Guo, S.S. Liu, T. Jiang, G.Z. Qiu, and F. Chen, Hydrometallurgy 147–148, 134 (2014).

    Article  Google Scholar 

  3. F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu, JOM 68, 1476 (2016).

    Article  Google Scholar 

  4. P.R. Taylor, S.A. Shuey, E.E. Vidal, and J.C. Gomez, Miner. Metall. Process. 23, 80 (2006).

    Google Scholar 

  5. W.G. Fu, Y.C. Wen, and H.E. Xie, J. Iron. Steel Res. Int. 18, 7 (2011).

    Article  Google Scholar 

  6. D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, J. Hazard. Mater. 244–245, 588 (2013).

    Article  Google Scholar 

  7. S.Y. Chen and M.S. Chu, J. S. Afr. Inst. Min. Metall. 114, 481 (2014).

    Google Scholar 

  8. Y. Sun, H.Y. Zheng, Y. Dong, X. Jiang, Y.S. Shen, and F.M. Shen, Int. J. Miner. Process. 142, 119 (2015).

    Article  Google Scholar 

  9. L. Zhao, L. Wang, D. Chen, H. Zhao, Y. Liu, and T. Qi, Trans. Nonferrous Met. Soc. China 25, 1325 (2015).

    Article  Google Scholar 

  10. S. Samanta, S. Mukherjee, and R. Dey, JOM 67, 467 (2015).

    Article  Google Scholar 

  11. M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, and P.F. Luo, JOM 68, 2698 (2016).

    Article  Google Scholar 

  12. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).

    Article  Google Scholar 

  13. Y.L. Zhen, G.H. Zhang, and K.C. Chou, Metall. Mater. Trans. B 46, 155 (2015).

    Article  Google Scholar 

  14. W. Geyser, W.S. Steinberg, and J. Nell, J. S. Afr. Inst. Min. Metall. 111, 707 (2011).

    Google Scholar 

  15. V.E. Roshchin, A.V. Asanov, and A.V. Roshchin, Russ. Metall. 11, 1001 (2010).

    Article  Google Scholar 

  16. J. Wang, Xi’an University of Architecture and Technology, Master Thesis (2014).

  17. E.H. Wu, University of Science and Technology, Beijing, Ph.D Thesis (2016).

  18. L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, and J.S. Jang, J. Non-Cryst. Solids 352, 123 (2006).

    Article  Google Scholar 

  19. E. Wearing, J. Mater. Sci. 18, 1629 (1983).

    Article  Google Scholar 

  20. S. Ren, Q.C. Liu, J.L. Zhang, M. Chen, X.D. Ma, and B.J. Zhao, Ironmak. Steelmak. 42, 117 (2015).

    Article  Google Scholar 

  21. T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).

    Article  Google Scholar 

  22. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).

    Article  Google Scholar 

  23. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Metall. Mater. Trans. B 44, 252 (2013).

    Article  Google Scholar 

  24. H.G. Du, Principles of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), p. 108.

    Google Scholar 

  25. X.H. Huang, Principles of Iron and Steel Metallurgy, 4th ed. (Beijing: Metallurgical Industry Press, 2013), pp. 61, 296, 439.

  26. M.X. Fang and H.S. Chen, Mater. Sci. Eng. Powder Metall. 11, 329 (2006).

    Google Scholar 

  27. A. Shankar, M.R.G. Rnerup, A.K. Lahiri, and S. Seetharaman, Metall. Mater. Trans. B 38, 911 (2007).

    Article  Google Scholar 

  28. P.C. Li and X.J. Ning, Metall. Mater. Trans. B 47, 446 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guo, Y., Jiang, T. et al. Reduction Behaviors of Iron, Vanadium and Titanium Oxides in Smelting of Vanadium Titanomagnetite Metallized Pellets. JOM 69, 1646–1653 (2017). https://doi.org/10.1007/s11837-017-2367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2367-x

Keywords

Navigation