Skip to main content
Log in

Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H.G. Du, Principle of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), pp. 1–10.

    Google Scholar 

  2. W.G. Fu, Y.C. Wen, H.E. Xie, and J. Iron, Steel Res. Int. 18, 7 (2011).

    Article  Google Scholar 

  3. P.R. Taylor, S.A. Shuey, E.E. Vidal, and J.C. Gomez, Miner. Metall. Process. 23, 80 (2006).

    Google Scholar 

  4. W. Geyser, W.S. Steinberg, J. Nell, and J.S. Afr, Inst. Min. Metall. 111, 707 (2011).

    Google Scholar 

  5. B.C. Jena, W. Dresler, and I.G. Reilly, Miner. Eng. 8, 159 (1995).

    Article  Google Scholar 

  6. Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, J. Alloys Compd. 706, 546 (2017).

    Article  Google Scholar 

  7. V.E. Roshchin, A.V. Asanov, and A.V. Roshchin, Russ. Metall. 11, 1001 (2010).

    Article  Google Scholar 

  8. S.Y. Chen, M.S. Chu, and J.S. Afr, Inst. Min. Metall. 114, 481 (2014).

    Google Scholar 

  9. B.J. Zhao, E. Jak, P. Hayes, and J. Iron, Steel Res. Int. 16, 1172 (2009).

    Google Scholar 

  10. Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).

    Article  Google Scholar 

  11. C. Chen, T. Sun, X. Wang, and T. Hu, JOM 69, 1759 (2017).

    Article  Google Scholar 

  12. C. Lv, K. Yang, S.M. Wen, S.J. Bai, and Q.C. Feng, JOM 69, 1801 (2017).

    Article  Google Scholar 

  13. F. Li, M.S. Chu, J. Tang, Z.G. Liu, C. Feng, and Y.T. Tang, JOM 69, 1751 (2017).

    Article  Google Scholar 

  14. F. Zheng, F. Chen, Y. Guo, T. Jiang, A.Y. Travyanov, and G. Qiu, JOM 68, 1476 (2016).

    Article  Google Scholar 

  15. K.K. Sahu, T.C. Alex, D. Mishra, and A. Agrawal, Waste Manag. Res. 24, 74 (2006).

    Article  Google Scholar 

  16. W.S. Steinberg and P.C. Pistorius, Ironmak. Steelmak. 36, 500 (2013).

    Article  Google Scholar 

  17. T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).

    Article  Google Scholar 

  18. E.H. Wu, R. Zhu, S.L. Yang, L. Ma, J. Li, J. Hou, and J. Iron, Steel Res. Int. 23, 655 (2016).

    Article  Google Scholar 

  19. X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).

    Article  Google Scholar 

  20. S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, and M. Tang, JOM 69, 1646 (2017).

    Article  Google Scholar 

  21. J. Tang, M.S. Chu, C. Feng, Y.T. Tang, and Z.G. Liu, ISIJ Int. 56, 210 (2016).

    Article  Google Scholar 

  22. M. Chen and B. Zhao, J. Am. Ceram. Soc. 96, 3631 (2013).

    Article  Google Scholar 

  23. M. Chen, X. Hou, J. Chen, and B. Zhao, Metall. Mater. Trans. B 47, 1690 (2016).

    Article  Google Scholar 

  24. X.H. Huang, Principles of Iron and Steel Metallurgy, 4th ed. (Beijing: Metallurgical Industry Press, 2013), pp. 296, 454.

  25. Z. Zhang, B. Xie, W. Zhou, J. Diao, and H.Y. Li, ISIJ Int. 56, 828 (2016).

    Article  Google Scholar 

  26. C. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, and A. Pelton, Calphad 33, 295 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Jie Yu for the lab assistance. The authors acknowledge the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland, for providing facilities and scientific and technical assistance. Shuai Wang acknowledges the financial support from China Scholarship Council for his work at The University of Queensland (No. 201606370132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, M., Guo, Y. et al. Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets. JOM 71, 1144–1149 (2019). https://doi.org/10.1007/s11837-018-2863-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2863-7

Navigation