Skip to main content
Log in

Effect of High-Energy Ball Milling in Toluene on the Morphology, Phase Evolution, and Contamination for Some Elemental Powders

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study reports the effect of milling time on the carbon content, morphology, crystallite size, and phase evolution of pure elemental Al, Fe, Ni, Cu, Cr, Mo, Si, Co, W, V, Ta, and Ti powders during high-energy ball milling (HEBM) in toluene. The XRD results show that the HEBM of Ti resulted in the formation of TiCx, which was confirmed by Raman Spectroscopy, while milling of Ta resulted in the formation of TaCx and TaHx. In comparison, there was no carbide or hydride phase formation up to 20 hours of milling for all other elemental powders. The weight percentage of carbon in the milled powder was observed to increase progressively with milling time. Ti powder showed the highest wt pct of C followed by Ta, W, Si, Al, Cr, Fe, Mo, V, Co, Ni, and Cu, respectively. The presence of carbon could be attributed to the dissociation of toluene and erosion of tungsten carbide balls and vials. The results show that carbon pickup significantly depends on the element being milled. The D50 particle size reduced appreciably after 20 hours of milling. The crystallite size for all the powders reduced progressively with milling time and was found to be in the range of 20 to 36 nm after 20 hours of milling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Ma and M. Atzmon: Mater. Chem. Phys., 1995, vol. 39, pp. 249–67.

    Article  CAS  Google Scholar 

  2. P.H. Shingu and K.N. Ishihara: Mater. Trans., JIM, 1995, vol. 36, pp. 96–101.

    Article  CAS  Google Scholar 

  3. H. Bakker, G.F. Zhou, and H. Yang: Prog. Mater. Sci., 1995, vol. 39, pp. 159–241.

    Article  CAS  Google Scholar 

  4. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–41.

    Article  CAS  Google Scholar 

  5. A. Ermakov, E.E. Yurchikov, and V.A. Barinov: Phys. Met. Metall., 1981, vol. 52, pp. 50–58.

    Google Scholar 

  6. J. Wang, Z. Zheng, J. Xu, and Y. Wang: J. Magn. Magn. Mater., 2014, vol. 355, pp. 58–64.

    Article  CAS  Google Scholar 

  7. B. Srinivasarao, C. Suryanarayana, K. Oh-Ishi, and K. Hono: Mater. Sci. Eng. A, 2009, vol. 518, pp. 100–07.

    Article  Google Scholar 

  8. P. Susila, D. Sturm, M. Heilmaier, B.S. Murty, and V. Subramanya Sarma: J. Mater. Sci., 2010, vol. 45, pp. 4858–65.

    Article  CAS  Google Scholar 

  9. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  10. L. Lu and M.O. Lai: Mater. Des., 1995, vol. 16, pp. 33–39.

    Article  CAS  Google Scholar 

  11. R.B. Schwarz and C.C. Koch: Appl. Phys. Lett., 1986, vol. 49, pp. 146–48.

    Article  CAS  Google Scholar 

  12. A.W. Weeber and H. Bakker: Physica B, 1988, vol. 153, pp. 93–135.

    Article  CAS  Google Scholar 

  13. J. Wang, X. Li, L.L. Shaw, H.L. Marcus, and T.B. Cameron: in Proc. International Solid Freeform Fabrication Symposium, 2001, pp. 546–52.

  14. K.L. Edwards: Mater. Des., 2004, vol. 25, pp. 529–33.

    Article  Google Scholar 

  15. T. Gietzelt, O. Jacobi, V. Piotter, R. Ruprecht, and J. Hausselt: J. Mater. Sci., 2004, vol. 39, pp. 2113–19.

    Article  CAS  Google Scholar 

  16. G.M. Carter, J.L. Henshall, and R.J. Wakeman: Powder Technol., 1991, vol. 65, pp. 403–10.

    Article  CAS  Google Scholar 

  17. V.G. Grechanyuk and E.M. Shelyakova: Soviet Powder Metall. Met. Ceram., 1986, vol. 25, pp. 359–60.

    Article  Google Scholar 

  18. A.P. Radlinski, A. Calka, B.W. Ninham, and W.A. Kaczmarek: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1346–49.

    Article  Google Scholar 

  19. S. Sohoni, R. Sridhar, and G. Mandal: Powder Technol., 1991, vol. 67, pp. 277–86.

    Article  CAS  Google Scholar 

  20. B.V. Velamakanni and D.W. Fuerstenau: Powder Technol., 1993, vol. 75, pp. 1–9.

    Article  CAS  Google Scholar 

  21. A.R.C. Westwood, D.L. Goldheim, and R.G. Lye: Philos. Mag., 1967, vol. 16, pp. 505–19.

    Article  CAS  Google Scholar 

  22. K. Suzuki and Y. Kuwahara: J. Chem. Eng. Jpn., 1986, vol. 19, pp. 191–95.

    Article  CAS  Google Scholar 

  23. S. Sheibani, A. Ataie, and S. Heshmati-Manesh: J. Alloys Compd., 2008, vol. 465, pp. 78–82.

    Article  CAS  Google Scholar 

  24. C. Suryanarayana and E. Ivanov Dr: in Advances in Powder Metallurgy, 2013, pp. 42–68.

  25. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi: J. Alloys Compd., 2017, vol. 709, pp. 829–41.

    Article  CAS  Google Scholar 

  26. J. Keskinen, A. Pogany, J. Rubin, and P. Ruuskanen: Mater. Sci. Eng. A, 1995, vol. 196, pp. 205–11.

    Article  Google Scholar 

  27. B.V. Neamţu, O. Isnard, I. Chicina, C. Vagner, N. Jumate, and P. Plaindoux: Mater. Chem. Phys., 2011, vol. 125, pp. 364–69.

    Article  Google Scholar 

  28. Z. Caamaño, G. Pérez, L.E. Zamora, S. Suriñach, J.S. Muñoz, and M.D. Baró: J. Non Cryst. Solids, 2001, vol. 287, pp. 15–19.

    Article  Google Scholar 

  29. T. Suzuki and M. Nagumo: Scr. Metall. Mater., 1992, vol. 27, pp. 1413–18.

    Article  CAS  Google Scholar 

  30. M. Pilar, J.J. Suñol, J. Bonastre, and L. Escoda: J. Non Cryst. Solids, 2007, vol. 353, pp. 848–50.

    Article  CAS  Google Scholar 

  31. N.S. Anas, M. Ramakrishna, R.K. Dash, T.N. Rao, and R. Vijay: Mater. Sci. Eng. A, 2019, vol. 751, pp. 171–82.

    Article  CAS  Google Scholar 

  32. X. Zhang, B. Chen, and Z. Wang: J. Colloid Interface Sci., 2007, vol. 313, pp. 414–22.

    Article  CAS  Google Scholar 

  33. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty: Mater. Des., 2017, vol. 126, pp. 37–46.

    Article  CAS  Google Scholar 

  34. R. Ravi and S.R. Bakshi: J. Alloys Compd., 2021, vol. 883, 160879.

    Article  CAS  Google Scholar 

  35. R.A. Sekhar, S. Samal, N. Nayan, and S.R. Bakshi: J. Alloys Compd., 2019, vol. 787, pp. 123–32.

    Article  Google Scholar 

  36. L. Raman, K. Guruvidyathri, G. Kumari, S.V.S.N. Murty, R.S. Kottada, and B.S. Murty: J. Mater. Res., 2019, vol. 34, pp. 756–66.

    Article  CAS  Google Scholar 

  37. R. Jayasree, R.B. Mane, R. Vijay, and D. Chakravarty: Mater. Lett., 2021, vol. 292, 129618.

    Article  CAS  Google Scholar 

  38. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Loue, and P. Scardi: J. Appl. Crystallogr., 1999, vol. 32, pp. 36–50.

    Article  CAS  Google Scholar 

  39. B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley Publishing Company Inc., Boston, 1978.

    Google Scholar 

  40. J.B. Nelson and D.P. Riley: Proc. Phys. Soc., 1945, vol. 57, p. 160.

    Article  CAS  Google Scholar 

  41. H.-J. Fecht: Nanostruct. Mater., 1995, vol. 6, pp. 33–42.

    Article  CAS  Google Scholar 

  42. J.X. Yang, H.L. Zhao, H.R. Gong, M. Song, and Q.Q. Ren: Sci. Rep., 2018, vol. 8, p. 1992.

    Article  Google Scholar 

  43. B. Avar and S. Ozcan: Ceram. Int., 2014, vol. 40, pp. 11123–30.

    Article  CAS  Google Scholar 

  44. I. Manna, P.P. Chattopadhyay, P. Nandi, F. Banhart, and H.J. Fecht: J. Appl. Phys., 2003, vol. 93, p. 1520.

    Article  CAS  Google Scholar 

  45. B. Uhrenius: Calphad, 1984, vol. 8, pp. 101–19.

    Article  CAS  Google Scholar 

  46. I.I. Chuev and D.Y. Kovalev: Mater. Chem. Phys., 2022, vol. 283, 126025.

    Article  CAS  Google Scholar 

  47. N.L. Peterson: Diffusion Mechanisms in Grain Boundaries in Solids, 1982.

  48. A.S. Bolokang, D.E. Motaung, C.J. Arendse, and T.F.G. Muller: Adv. Powder Technol., 2015, vol. 26, pp. 632–39.

    Article  CAS  Google Scholar 

  49. T.S. Suzuki and M. Nagumo: Scr. Metall. Mater., 1995, vol. 32, pp. 1215–20.

    Article  CAS  Google Scholar 

  50. V.N. Lipatnikov, A.A. Rempel, and A.I. Gusev: Int. J. Refract. Metals Hard Mater., 1997, vol. 15, pp. 61–64.

    Article  CAS  Google Scholar 

  51. B.H. Lohse, A. Calka, and D. Wexler: J. Appl. Phys., 2005, vol. 97, 114912.

    Article  Google Scholar 

  52. M.V. Klein, J.A. Holy, and W.S. Williams: Phys. Rev. B, 1978, vol. 17, p. 1546.

    Article  CAS  Google Scholar 

  53. S. Urbonaite, L. Hälldahl, and G. Svensson: Carbon N Y, 2008, vol. 46, pp. 1942–47.

    Article  CAS  Google Scholar 

  54. P. Pachfule, D. Shinde, M. Majumder, and Q. Xu: Nat. Chem., 2016, vol. 8, pp. 718–24.

    Article  CAS  Google Scholar 

  55. R. Yuan, Y. Dong, R. Hou, L. Shang, J. Zhang, S. Zhang, X. Chen, and H. Song: Chem. Eng. J., 2023, vol. 454, 140418.

    Article  CAS  Google Scholar 

  56. M.T. Timko, A.R. Maag, J.M. Venegas, B. McKeogh, Z. Yang, G.A. Tompsett, S. Escapa, J. Toto, E. Heckley, and F.T. Greenaway: RSC Adv., 2016, vol. 6, pp. 12021–31.

    Article  CAS  Google Scholar 

  57. S. Zhang, Y. Cui, B. Wu, R. Song, H. Song, J. Zhou, X. Chen, J. Liu, and L. Cao: RSC Adv., 2014, vol. 4, pp. 505–09.

    Article  CAS  Google Scholar 

  58. O.M. Kanunnikova, V.V. Aksenova, and G.A. Dorofeev: Mater. Sci. Forum, 2020, vol. 989, pp. 532–36.

    Article  Google Scholar 

  59. H. Wipf, M.V. Klein, and W.S. Williams: Physica Status Solidi b, 1981, vol. 108, pp. 489–500.

    Article  CAS  Google Scholar 

  60. M. Schoenitz, X. Zhu, and E.L. Dreizin: Scr. Mater., 2005, vol. 53, pp. 1095–99.

    Article  CAS  Google Scholar 

  61. X.P. Niu, L. Froyen, L. Delaey, and C. Peytour: Scripta Metall. Mater., 1994, vol. 30, pp. 13–18.

    Article  CAS  Google Scholar 

  62. J.L. Iturbe-García and B.E. López-Muñoz: Adv. Nanopart., 2014, vol. 03, pp. 159–66.

    Article  Google Scholar 

  63. S. Semboshi, N. Masahashi, and S. Hanada: Met. Mater. Int., 2004, vol. 10, pp. 45–53.

    Article  CAS  Google Scholar 

  64. S.R. Shatynski: Oxid. Met., 1979, vol. 13, pp. 105–18.

    Article  CAS  Google Scholar 

  65. K. Vasanthakumar and S.R. Bakshi: Ceram. Int., 2018, vol. 44, pp. 484–94.

    Article  CAS  Google Scholar 

  66. M.B. Rahaei, A. Kazemzadeh, and T. Ebadzadeh: Powder Technol., 2012, vol. 217, pp. 369–76.

    Article  CAS  Google Scholar 

  67. B. Ghosh and S.K. Pradhan: Mater. Chem. Phys., 2010, vol. 120, pp. 537–45.

    Article  CAS  Google Scholar 

  68. H.L. Chiang and L.X. Zeng: J. Alloys Compd., 2018, vol. 748, pp. 861–70.

    Article  CAS  Google Scholar 

  69. X. Wang and Q. Zhang: Powder Technol., 2020, vol. 371, pp. 55–63.

    Article  CAS  Google Scholar 

  70. G.A. Bowmaker: Chem. Commun., 2013, vol. 49, pp. 334–48.

    Article  CAS  Google Scholar 

  71. L.L. Ye and M.X. Quan: Nanostruct. Mater., 1995, vol. 5, pp. 25–31.

    Article  CAS  Google Scholar 

  72. J.S. Benjamin: Sci. Am., 1976, vol. 234, pp. 40–49.

    Article  CAS  Google Scholar 

  73. J. Ye, J. He, and J.M. Schoenung: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3099–3109.

    Article  CAS  Google Scholar 

  74. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, and K. Han: Acta Mater., 2005, vol. 53, pp. 1521–33.

    Article  CAS  Google Scholar 

  75. A.H. Cottrell: The Mechanical Properties of Matter, 1964.

  76. C.L. Chen and C.L. Huang: Int. J. Refract. Metals Hard Mater., 2014, vol. 44, pp. 19–26.

    Article  Google Scholar 

  77. X.-T. Luo, C.-J. Li, and G.-J. Yang: J. Alloys Compd., 2013, vol. 548, pp. 180–87.

    Article  CAS  Google Scholar 

  78. M.S. El-Eskandarany, K. Aoki, and K. Suzuki: J. Less Common Met., 1990, vol. 167, pp. 113–18.

    Article  CAS  Google Scholar 

  79. D. Oleszak and P.H. Shingu: J. Appl. Phys., 1996, vol. 79, pp. 2975–80.

    Article  CAS  Google Scholar 

  80. K. Tanaka and T. Mori: Acta Metall., 1970, vol. 18, pp. 931–41.

    Article  CAS  Google Scholar 

  81. A. Pragatheeswaran, R. Ravi, and S.R. Bakshi: Adv. Powder Technol., 2019, vol. 30, pp. 2759–67.

    Article  CAS  Google Scholar 

  82. F.L. Zhang, C.Y. Wang, and M. Zhu: Scr. Mater., 2003, vol. 49, pp. 1123–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from Ministry of Human Resources Development under the Institute of Eminence scheme for carrying out the work (Grant No. SB20210993MMMHRD008470). Authors would like to thank Ms. Ramya S. for helping with carbon analysis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Bakshi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, K.K., Pradeep, K.G. & Bakshi, S.R. Effect of High-Energy Ball Milling in Toluene on the Morphology, Phase Evolution, and Contamination for Some Elemental Powders. Metall Mater Trans A 55, 303–319 (2024). https://doi.org/10.1007/s11661-023-07250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07250-2

Navigation