Skip to main content

Advertisement

Log in

Removal of Heavy Metals from Industrial Wastewater by Chemical Precipitation: Mechanisms and Sludge Characterization

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Chemical precipitation using lime (Ca(OH)2), caustic soda (NaOH) and soda ash (Na2CO3) for the removal of simultaneous heavy metals (Cu(II) and Zn(II)) from industrial wastewater of the cable industry was carried out in laboratory by jar tests. For each reagent used, an improvement in copper and zinc removal efficiency was obtained by increasing the precipitating reagent dose (10–400 mg/L). Efficiencies of over 90% can be achieved. Chemical precipitation efficiency is related to the pH of the treatment. At a high final pH level (8 < pH < 10), the removal efficiency of copper for each precipitating agent is slightly higher than that of zinc and the residual metal contents were in conformity with industrial discharge standards. In sludge product, zinc and copper were precipitated as amorphous hydroxides including Zn(OH)2 and Cu(OH)2. Based on XRD analysis, the presence of an amount of other additional phases was noticed for copper. SEM images show that sludges produced are not large in size and are compact in structure. Corresponding EDX (energy-dispersive X-ray spectroscopy) shows that the amount of copper is higher than the amount of zinc in all recovered sludge. Wastewater treatment with soda ash resulted in a lower volume and a large product size of sludge. As a result, drying steps can be less expensive. This is a significant advantage comparably with the other precipitating agents. Soda ash may be considered as cost-effective precipitating agent for Cu(II) and Zn(II) in the industrial wastewater of the cable industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta, V.K.; Ali, I.: Environmental Water: Advances in Treatment, Remediation and Recycling. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M.: Removal of heavy metals from industrial wastewaters: a review. Chem. Biol. Eng. Rev. 4, 37–59 (2017). https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  3. Fu, F.; Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ Manag. 92, 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  Google Scholar 

  4. Samiullah, M.; Aslam, Z.; Rana, A.G.; Abbas, A.; Ahmad, W.: Alkali-activated boiler fly ash for Ni(II) removal: characterization and parametric study. Water Air Soil Pollut. 229, 113 (2018). https://doi.org/10.1007/s11270-018-3758-5

    Article  Google Scholar 

  5. Dai, Y.; Zhang, K.; Li, J.; Jiang, Y.; Chen, Y.; Tanaka, S.: Adsorption of copper and zinc onto carbon material in an aqueous solution oxidized by ammonium peroxydisulphate. Sep. Purif. Technol. 186, 255–263 (2017). https://doi.org/10.1016/j.seppur.2017.05.060

    Article  Google Scholar 

  6. Wang, W.; Hua, Y.; Li, S.; Yan, W.; Zhang, W.-X.: Removal of Pb(II) and Zn(II) using lime and nanoscale zero-valent iron (nZVI): a comparative study. Chem. Eng. J. 304, 79–88 (2016). https://doi.org/10.1016/j.cej.2016.06.069

    Article  Google Scholar 

  7. Khalid, R.; Aslam, Z.; Abbas, A.; Ahmad, W.; Ramzan, N.; Shawabkeh, R.: Adsorptive potential of Acacia nilotica based adsorbent for chromium(VI) from an aqueous phase. Chin. J. Chem. Eng. 26, 614–622 (2018). https://doi.org/10.1016/j.cjche.2017.08.017

    Article  Google Scholar 

  8. Paulino, A.T.; Minasse, F.A.; Guilherme, M.R.; Reis, A.V.; Muniz, E.C.; Nozaki, J.: Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J Colloid Interface Sci. 301, 479–487 (2006). https://doi.org/10.1016/j.jcis.2006.05.032

    Article  Google Scholar 

  9. Oyaro, N.; Ogendi, J.; Murago, E.N.; Gitonga, E.: The contents of Pb, Cu, Zn and Cd in meat in nairobi, Kenya. J. Food Agric. Environ. 5(3/4), 119–121 (2007)

    Google Scholar 

  10. Laus, R.; Costa, T.G.; Szpoganicz, B.; Fávere, V.T.: Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J. Hazard Mater. 183, 233–241 (2010). https://doi.org/10.1016/j.jhazmat.2010.07.016

    Article  Google Scholar 

  11. Al-Ghouti, M.A.; Khraisheh, M.A.; Tutuji, M.: Flow injection potentiometric stripping analysis for study of adsorption of heavy metal ions onto modified diatomite. Chem. Eng. J. 104, 83–91 (2004). https://doi.org/10.1016/j.cej.2004.07.010

    Article  Google Scholar 

  12. Ghosh, P.; Samanta, A.N.; Ray, S.: Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 266, 213–217 (2011). https://doi.org/10.1016/j.desal.2010.08.029

    Article  Google Scholar 

  13. Barbooti, M.M.; Abid, B.A.; Al-Shuwaiki, N.M.: Removal of heavy metals using chemicals precipitation. Eng. Technol. J. 29, 595–612 (2011)

    Google Scholar 

  14. Mohamed, R.; El-Maghrabi, H.H.; Riad, M.; Mikhail, S.: Environmental friendly FeOOH adsorbent materials preparation, characterization and mathematical kinetics adsorption data. J. Water Process Eng. 16, 212–222 (2017). https://doi.org/10.1016/j.jwpe.2017.01.005

    Article  Google Scholar 

  15. Wang, L.K.; Hung, Y.-T.; Shammas, N.K.: Handbook of Environmental Engineering, Volume 3: Physicochemical Treatment Processes. Humana Press Inc, Totowa, NJ (2005)

  16. Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z.: Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 26, 289–300 (2018). https://doi.org/10.1016/j.jwpe.2018.11.003

    Article  Google Scholar 

  17. Khawar, A.; Aslam, Z.; Javed, S.; Abbas, A.: Pb(II) biosorption using DAP/EDTA-modified biopolymer (Chitosan). Chem. Eng. Comm. 205, 1555–1567 (2018). https://doi.org/10.1080/00986445.2018.1460598

    Article  Google Scholar 

  18. Youcef, L.; Achour, S.: Elimination de polluants des eaux (Fluor, cadmium, phosphates). Application des procédés de précipitation chimique et d’adsorption. Presses Académiques Francophones, Sarrebruck, Allemagne (2014)

    Google Scholar 

  19. Sharma, S.; Rana, S.; Thakkar, A.; Baldi, A.; Murthy, R.S.R.; Sharma, R.K.: Physical, chemical and phytoremediation technique for removal of heavy metals. J. Heavy Met. Toxicity Dis. 1, 1–15 (2016). https://doi.org/10.21767/2473-6457.100010

  20. Lim, M.; Kim, M.-J.: Reuse of washing effluent containing oxalic acid by a combined precipitation–acidification process. Chemosphere 90, 1526–1532 (2013). https://doi.org/10.1016/j.chemosphere.2012.08.047

    Article  Google Scholar 

  21. Meunier, N.; Drogui, P.; Montané, C.; Hausler, R.; Mercier, G.; Blais, J.-F.: Comparison between electrocoagulation and chemical precipitation for metals removal from acidic soil leachate. J. Hazard. Mater. 137, 581–590 (2006). https://doi.org/10.1016/j.jhazmat.2006.02.050

    Article  Google Scholar 

  22. Sis, H.; Uysal, T.: Removal of heavy metal ions from aqueous medium using Kuluncak (Malatya) vermiculites and effect of precipitation on removal. Appl. Appl. Clay. Sci. 95, 1–8 (2014). https://doi.org/10.1016/j.clay.2014.03.018

    Article  Google Scholar 

  23. Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S.: Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006). https://doi.org/10.1016/j.cej.2006.01.015

    Article  Google Scholar 

  24. Rodier, J.; Legube, B.; Merlet, N.; Brunet, R.: L'analyse de l’eau. 9ème édition, Dunod, Paris, France (2009)

  25. Collins, T.J.. ImageJ for microscopy. Biotechniques. 43, S25–S30 (2007). https://doi.org/10.2144/000112517

  26. Allison, J.D.; Brown, D.S.; Novo-Gradac, K.J.: MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user's manual 1991. Environmental Research Laboratory, Office of Research and Development, US (1991)

  27. Gustafsson, J.P.: Visual MINTEQ 3.0 user guide. KTH (Department of Land and Water Recources,Stockholm, Sweden (2011)

  28. OJAR, Official Journal of the Algerian Republic: Executive Order No. 06-141 of 19 April 2006 , Section 1, article 3 (2006)

  29. Barakat, M.: New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011). https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  Google Scholar 

  30. Ya, Z.; Zhou, L.; Bao, Z.; Gao, P.; Sun, X.: High efficiency of heavy metal removal in mine water by limestone. Chin. J. Geochem. 28, 293–298 (2009). https://doi.org/10.1007/s11631-009-0293-5

  31. Kinnunen, P.; Kyllönen, H.; Kaartinen, T.; Mäkinen, J.; Heikkinen, J.; Miettinen, V.: Sulphate removal from mine water with chemical, biological and membrane technologies. Water Sci. Technol. 2017(1), 194–205 (2018). https://doi.org/10.2166/wst.2018.102

  32. Brown, I.W.M.; Mackenzie, K.J.D.; Gainsford, G.J.: Thermal decomposition of the basic copper carbonates malachite and azurite. Thermochimica Acta, 75(1–2), 23–32 (1984). https://doi.org/10.1016/0040-6031(84)85003-0

  33. Muller, J.: Etude électrochimique et caractérisation des produits de corrosion formés à la surface des bronzes Cu-Sn en milieu sulfate, Thèse Docteur en Sciences, spécialité: Chimie et Science des Matériaux. Université Paris-Est, France (2010)

    Google Scholar 

  34. Fitzgerald, K.P.; Nairn, J.; Atrens, A.: The chemistry of copper patination. Corros. Sci. 40, 2029–2050 (1998). https://doi.org/10.1016/S0010-938X(98)00093-6

    Article  Google Scholar 

  35. Strandberg, H.; Johansson, L.G.; Lindqvist, O.: The atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Mater. Corros. 48, 721–730 (1997). https://doi.org/10.1002/maco.19970481102

    Article  Google Scholar 

  36. Krätschmer, A.; Wallinder, I.O.; Leygraf, C.: The evolution of outdoor copper patina. Corros. sci. 44, 425–450 (2002). https://doi.org/10.1016/S0010-938X(01)00081-6

    Article  Google Scholar 

  37. Balintova, M.; Petrilakova, A.: Study of pH influence on selective precipitation of heavy metals from acid mine drainage. Chem. Eng. Trans. 25, 1–6 (2011). https://doi.org/10.3303/CET1125058

    Article  Google Scholar 

  38. Mirbagheri, S.A.; Hosseini, S.N.: Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination 171, 85–93 (2005). https://doi.org/10.1016/j.desal.2004.03.022

    Article  Google Scholar 

  39. Charerntanyarak, L.: Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 39, 135–138 (1999). https://doi.org/10.1016/S0273-1223(99)00304-2

    Article  Google Scholar 

  40. Abdel-Shafy, H.I.: Chemical treatment for removal of heavy metals from industrial wastewater. Egypt. J. Chem. 58, 1–12 (2015)

    Article  Google Scholar 

  41. Benalia, M.C.; Youcef, L.; Achour, S.: Possibility of removal of heavy metals (Cu, Cd and Zn) by chemical precipitation (in International Seminar on Hydrogeology and Environment: Ouargla, Algeria (2019)

  42. Lorthiois, M.; Richard, G.; Sutter, B.: Guide d’analyse des eaux de rejets de traitements de surface1990. Centre technique des industries mécaniques, France (1990)

    Google Scholar 

  43. Esmaeili, A.; Mesdaghi nia A.; Vazirinejad, R.: Chromium(III) removal and recovery from tannery wastewater by precipitation process. Am. J. Appl. Sci. 2, 1471–1473 (2005). https://doi.org/10.3844/ajassp.2005.1471.1473

  44. Scholz, M.: Water Softening. Wetland Systems to Control Urban Runoff. Amsterdam: Elsevier Science, pp. 135–139 (2006). https://doi.org/10.1016/B978-0-444-52734-9.X5000-2

  45. Pénéliau, F.R.: Les carboxylates de sodium : Réactifs de précipitation sélective des cations métalliques contenus dans les effluents liquides. Université de METZ, France, Thèse de docteur en Chimie minérale et Analytique (2003)

    Google Scholar 

  46. Li, X.; Zhang, Q.; Yang, B.: Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue. Chemosphere (2020). https://doi.org/10.1016/j.chemosphere.2019.124660

Download references

Acknowledgements

This study was motivated by Research Laboratory in Subterranean and Surface Hydraulics, Civil Engineering and Hydraulic Department, University of Biskra and the General direction of Scientific Research and Technological Development of the Ministry of Higher Education and Scientific Research-Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Youcef.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benalia, M.C., Youcef, L., Bouaziz, M.G. et al. Removal of Heavy Metals from Industrial Wastewater by Chemical Precipitation: Mechanisms and Sludge Characterization. Arab J Sci Eng 47, 5587–5599 (2022). https://doi.org/10.1007/s13369-021-05525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05525-7

Keywords

Navigation