Skip to main content
Log in

Dynamic Grain Growth Driven by Subgrain Boundaries in an Interstitial-Free Steel During Deformation at 850 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A mechanism is proposed for dynamic grain growth (DGG) by subgrain boundaries driving grain-boundary migration. This mechanism is evaluated against data from an interstitial-free steel tested in tension at 850 °C and a true-strain rate of \(10^{-4}\) s\(^{-1}\) and rapidly quenched to preserve microstructures evolved during deformation. Tensile tests produced steady-state flow, distinct subgrains, and rapid DGG. Static annealing alone produced static grain growth (SGG) that was much slower than DGG. Electron backscatter diffraction (EBSD) provided grain size and orientation measurements. High-resolution electron backscatter diffraction (HR-EBSD) was used to accurately measure subgrain sizes and subgrain boundary misorientations. The average grain size increased linearly with strain during DGG, but the average subgrain size remained constant during straining. The average subgrain boundary misorientation increased with strain, initially rapidly and then slowly. The dihedral angle imposed in grain boundaries by intersecting subgrain boundaries decreased with increasing subgrain boundary misorientation, which supports the proposed mechanism for DGG. The driving pressure for grain-boundary migration from subgrain boundaries is estimated to be approximately one order in magnitude greater than that from dislocation density reduction under the conditions examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.G. Byrne: Recovery, Recrystallization, and Grain Growth, The Macmillan Company, New York, 1965.

    Google Scholar 

  2. M.A. Clark and T.H. Alden: Acta Metall., 1973, vol. 21(9), pp. 1195–1206.

    Article  CAS  Google Scholar 

  3. O.N. Senkov and M.M. Myshlyaev: Acta Metall., 1986, vol. 34(1), pp. 97–106.

    Article  CAS  Google Scholar 

  4. D.S. Wilkinson and C.H. Cáceres: Acta Metall., 1984, vol. 32(9), pp. 1335–45.

    Article  CAS  Google Scholar 

  5. M.K. Rabinovich and V.G. Trifonov: Acta Mater., 1996, vol. 44(5), pp. 2073–78.

    Article  CAS  Google Scholar 

  6. B.-N. Kim, K. Hiraga, Y. Sakka, and B.-W. Ahn: Acta Mater., 1999, vol. 47(12), pp. 3433–39.

    Article  CAS  Google Scholar 

  7. P.S. Bate, K.B. Hyde, S.A. Court, and F.J. Humphreys: Mater. Sci. Forum., 2004, vol. 447-448, pp. 61–66.

    Article  Google Scholar 

  8. K.B. Hyde and P.S. Bate: Acta Mater., 2005, vol. 53(16), pp. 4313–21.

    Article  CAS  Google Scholar 

  9. O.V. Rofman and P.S. Bate: Acta Mater., 2010, vol. 58(7), pp. 2527–34.

    Article  CAS  Google Scholar 

  10. J.R. Ciulik and E.M. Taleff: Scr. Mater., 2009, vol. 61(10), pp. 895–98.

    Article  CAS  Google Scholar 

  11. N.A. Pedrazas, T.E. Buchheit, E.A. Holm, and E.M. Taleff: Mater. Sci. Eng., A, 2013, vol. 610, pp. 76–84.

  12. D.L. Worthington, N.A. Pedrazas, and P.J. Noell, E.M. Taleff: Metall. Mater. Trans. A, 2013, vol. 44(11), pp. 5025–38.

    Article  CAS  Google Scholar 

  13. P.J. Noell and E.M. Taleff: JOM, 2015, vol. 67(11), pp. 2642–45.

    Article  CAS  Google Scholar 

  14. P.J. Noell, D.L. Worthington, and E.M. Taleff: Metall. Mater. Trans. A, 2015, vol. 46(12), pp. 5709–18.

    Google Scholar 

  15. P.J. Noell and E.M. Taleff: Metall. Mater. Trans. A, 2016, vol. 47(10), pp. 5023–36.

    Article  CAS  Google Scholar 

  16. P.J. Noell, D.L. Worthington, and E.M. Taleff: Mater. Sci. Eng., A, 2017, vol. 692, pp. 24–34.

  17. P.J. Noell and E.M. Taleff: Metall. Mater. Trans. A, 2019, vol. 50A(10), pp. 4608–19.

    Article  Google Scholar 

  18. R.E. Rupp, P.J. Noell, and E.M. Taleff: Metall. Mater. Trans. A, 2020, vol. 51A(12), pp. 6167–83.

    Article  Google Scholar 

  19. J. Humphreys, G.S. Rohrer, and A. Rollet: Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, Cambridge, MA, 2017.

    Google Scholar 

  20. G. Gottstein and L.S. Shvindlerman: Grain Boundary Migration in Metals, CRC Press, Boca Raton, FL, 2010.

    Google Scholar 

  21. A. Bhattacharya, Y.-F. Shen, C.M. Hefferan, S.F. Li, J. Lind, R.M. Suter, C.E. Krill, and G.S. Rohrer: Science, 2021, vol. 374(6564), pp. 189–93.

    Article  CAS  Google Scholar 

  22. R.C. Gifkins: Trans. Metall. Soc. AIME, 1959, vol. 215, pp. 1015–22.

    CAS  Google Scholar 

  23. P.S. Bate: Acta Mater., 2001, vol. 49(8), pp. 1453–61.

    Article  CAS  Google Scholar 

  24. Y. Onuki, R. Hongo, K. Okayasu, and H. Fukutomi: Acta Mater., 2013, vol. 61, pp. 1294–1302.

    Article  CAS  Google Scholar 

  25. C.R. Barrett, W.D. Nix, and O.D. Sherby: ASM Trans. Q., 1966, vol. 59(1), pp. 3–15.

    CAS  Google Scholar 

  26. O.D. Sherby and P.M. Burke: Prog. Mater. Sci., 1968, vol. 13, pp. 325–90.

    Article  Google Scholar 

  27. J.E. Bird, A.K. Mukherjee, and J.E. Dorn: in D.G. Brandon and A. Rosen, eds., Proceedings of the International Conference on Quantitative Relation Between Properties and Microstructure, Israel Universities Press, Haifa, Israel, 1969, pp. 255–42.

  28. S. Karashima, T. Iikubo, and H. Oikawa: Trans. Jpn. Inst. Met., 1972, vol. 13(3), pp. 176–81.

    Article  CAS  Google Scholar 

  29. S.F. Exell and D.H. Warrington: Philos. Mag., 1972, vol. 26(5), pp. 1121–36.

    Article  CAS  Google Scholar 

  30. R.G. Stang, W.D. Nix, and C.R. Barrett: Metall. Trans. A, 1975, vol. 6A, pp. 2065–17.

    Article  CAS  Google Scholar 

  31. M.E. Kassner and M.E. McMahon: Metall. Trans. A, 1987, vol. 18(5), pp. 835–46.

    Google Scholar 

  32. A. Einstein: Ann. Phys., 1905, vol. 322(8), pp. 549–60.

    Article  Google Scholar 

  33. W. Sutherland: Philos. Mag., 1905, vol. 9(54), pp. 781–85.

    Article  CAS  Google Scholar 

  34. M. von Smoluchowski: Ann. Phys., 1906, vol. 326(14), pp. 756–80.

    Article  Google Scholar 

  35. M. Winning, G. Gottstein, and L.S. Shvindlerman: Acta Mater., 2001, vol. 49(2), pp. 211–19.

    Article  CAS  Google Scholar 

  36. M. Winning, G. Gottstein, and L.S. Shvindlerman: Mater. Sci. Eng., A, 2001, vol. 317(1–2), pp. 17–20.

  37. J.W. Cahn and J.E. Taylor: Acta Mater., 2004, vol. 52(16), pp. 4887–98.

    Article  CAS  Google Scholar 

  38. J.W. Cahn, Y. Mishin, and A. Suzuku: Acta Mater., 2006, vol. 54, pp. 4953–75.

    Article  CAS  Google Scholar 

  39. J. Han, S.L. Thomas, and D.J. Srolovitz: Prog. Mater. Sci., 2018, vol. 98, pp. 386–476.

    Article  Google Scholar 

  40. J. Weertman and J.R. Weertman: Elementary Dislocation Theory, Macmillan, New York, 1964.

    Google Scholar 

  41. J.P. Hirth and J. Lothe: Theory of Dislocations, Wiley, New York, 2nd ed., 1982.

    Google Scholar 

  42. D. Hull and D.J. Bacon: Introduction to Dislocations, 5th ed., Elsevier/Butterworth-Hienemann, Burlington, MA, 2011.

    Google Scholar 

  43. W.R. Cannon and O.D. Sherby: Metall. Trans., 1970, vol. 1(4), pp. 1030–32.

    Article  CAS  Google Scholar 

  44. P. Yavari, F.A. Mohamed, and T.G. Langdon: Acta Metall., 1981, vol. 29(8), pp. 1495–1507.

    Article  CAS  Google Scholar 

  45. W. Shockley and W.T. Read: Phys. Rev., 1949, vol. 75, pp. 692.

    Article  CAS  Google Scholar 

  46. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78(3), pp. 275–89.

    Article  CAS  Google Scholar 

  47. W. Köster: Z. Metallkd., 1948, vol. 39, pp. 1–9.

    Google Scholar 

  48. T.J. Bennett, IV: Master’s thesis, The University of Texas at Austin, 2022.

  49. MTEX documentation, https://mtex-toolbox.github.io/Documentation.html, 2023.

  50. MathWorks Inc.: Matlab, version R2022a, 2022.

  51. R. Bergmann, R.H. Chan, R. Hielscher, J. Persch, and G. Steidl: Inverse Prob. Imaging, 2016, vol. 10(2), pp. 281–304.

    Google Scholar 

  52. S.A. Saltykov: Stereometric Metallurgy, vol. 2, 2nd ed., Armed Services Technical Information Agency, Arlington, VA, 1961.

  53. ASTM International: Standard Designation E112–13, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  54. A.J. Wilkinson, G. Meaden, and D.J. Dingley: Ultramicroscopy, 2006, vol. 106(4), pp. 307–13.

    Article  CAS  Google Scholar 

  55. OpenXY, https://github.com/BYU-MicrostructureOfMaterials/OpenXY, 2023.

  56. G.I. Taylor: J. Inst. Met., 1938, vol. 62(1), pp. 307–24.

    Google Scholar 

  57. D.N. Joanes and C.A. Gill: J. R. Stat. Soc. Ser. D), 1998, vol. 47(1), pp. 183–89.

  58. J. Lin and O.D. Sherby: Res Mech., 1981, vol. 2(4), pp. 251–93.

    CAS  Google Scholar 

  59. O.D. Sherby, A.K. Miller, and M.E. Kassner: Met. Forum, 1981, vol. 4(1–2), pp. 53–56.

  60. O.D. Sherby, R.H. Klundt, and A.K. Miller: Metall. Trans. A, 1977, vol. 8A(6), pp. 843–50.

    CAS  Google Scholar 

  61. S.O. Robinson, C.M. Young, and O.D. Sherby: J. Mater. Sci., 1974, vol. 9(2), pp. 341–43.

    Article  CAS  Google Scholar 

  62. C.M. Young and O.D. Sherby: J. Iron Steel Inst., London, 1973, vol. 211(9), pp. 640–47.

  63. O.D. Sherby and J. Wadsworth: Prog. Mater. Sci., 1989, vol. 33, pp. 169–221.

    Article  CAS  Google Scholar 

  64. W.C. Lenthe, S. Singh, and M. De Graef: Ultramicroscopy, 2019, vol. 207, pp. 112841.

    Article  CAS  Google Scholar 

  65. S. Singh, F. Ram, and M. De Graef: Microsc. Microanal., 2017, vol. 23(S1), pp. 212–13.

    Article  Google Scholar 

  66. S.F. Subramanian, M. Prikryl, B.D. Gaulin, D.D. Clifford, S. Benincasa, and I. O’Reilly: ISIJ Int., 1994, vol. 34(1), pp. 61–69.

    Article  CAS  Google Scholar 

  67. T.A. Roth: Mater. Sci. Eng., 1975, vol. 18, pp. 183–92.

    Article  CAS  Google Scholar 

  68. E.D. Hondros: Proc. R. S. A, 1965, vol. 286(1407), pp. 479–98.

  69. A.T. Price, H. Holl, and A.P. Greenough: Acta Metall., 1964, vol. 12(1), pp. 49–58.

    Article  CAS  Google Scholar 

  70. L.E. Murr: Interfacial Phenomena in Metals and Alloys, Addison-Wesley Publishing Company, Reading, MA, 1975.

    Google Scholar 

  71. E.D. Hondros and L.E.H. Stuart: Philos. Mag., 1968, vol. 17(148), pp. 711–27.

    Article  CAS  Google Scholar 

  72. A. Jaatinen, C.V. Achim, K.R. Elder, and T. Ala-Nissila: Technische Mechanik, 2010, vol. 30(1–3), pp. 169–76.

    Google Scholar 

  73. S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, and G.S. Rohrer: Acta Mater., 2015, vol. 88, pp. 346–54.

    Article  CAS  Google Scholar 

  74. J. Wang, G.K.H. Madsen, and R. Drautz: Grain boundaries in BCC-Fe: Modell. Simul. Mater. Sci. Eng., 2018, vol. 26, pp. 025008.

    Article  Google Scholar 

  75. C.G. Dunn and F. Lionetti: Trans. AIME, 1949, vol. 1(2), pp. 125–32.

    CAS  Google Scholar 

  76. C.G. Dunn, F.W. Daniels, and M.J. Bolton: Trans. AIME, 1950, vol. 188, pp. 1245–48.

    CAS  Google Scholar 

  77. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics, Pergamon Press Inc., New York, NY, 1982.

    Google Scholar 

  78. J.P. Butler and J.A. Reeds: SIAM J. Appl. Math., 1987, vol. 47(3), pp. 670–77.

    Google Scholar 

  79. J.A. Reeds and J.P. Butler: SIAM J. Appl. Math., 1987, vol. 47(3), pp. 678–87.

    Google Scholar 

  80. B.C. Carlson: Numer. Math., 1979, vol. 33(1), pp. 1–16.

    Article  Google Scholar 

  81. B.C. Carlson and E.M. Notis: ACM Trans. Math. Software, 1981, vol. 7(3), pp. 398–403.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Foundation for sponsoring this work under Grant DMR-2003312 and instrumentation under Grant DMR-9974476. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract 89233218CNA000001) and Sandia National Laboratories (Contract DE-NA-0003525). The authors are grateful to Mr. Toshiyasu Ukena (Nippon Steel, retired) for his suggestions and recommendations important to establishing and then developing this research effort. Mr. Thomas Cayia (Arcelor Mittal) is gratefully acknowledged for providing the interstitial-free steel material used in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Bennett IV.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, T.J., Taleff, E.M. Dynamic Grain Growth Driven by Subgrain Boundaries in an Interstitial-Free Steel During Deformation at 850 °C. Metall Mater Trans A 55, 429–446 (2024). https://doi.org/10.1007/s11661-023-07256-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07256-w

Navigation