Skip to main content
Log in

Dynamic Abnormal Grain Growth in Molybdenum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10−5 to 10−4 s−1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a 〈110〉 direction, preferentially producing single crystals with orientations from an approximately 〈110〉 fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.G. Byrne: Recovery, Recrystallization, and Grain Growth, The MacMillian Company, New York, 1965, p. 106.

    Google Scholar 

  2. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004, pp. 368–370.

    Google Scholar 

  3. J. Dennis, P.S. Bate, and F.J. Humphreys: Mater. Sci. Forum, 2007, vol. 558–559, pp. 717–722.

    Article  Google Scholar 

  4. C. L. Briant, F. Zaverl, and W. T. Carter: Acta Metallurgica et Materialia, 1994, vol. 42, pp. 2811–2821.

    Article  CAS  Google Scholar 

  5. V. Randle: Materials Science Forum, 1993, vol. 113–115, pp. 189–194.

    Article  Google Scholar 

  6. J.B. Koo, D.Y. Yoon, and M.F. Henry: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1489–1491.

    Article  CAS  Google Scholar 

  7. K. Takebe and Y. Hiraoka: Mo Alloy Single Crystal and Its Production, Japan Patent No. JP6248384, September 6, 1990.

  8. T. Fujii, Y. Hiraoka and R. Watanabe: United States Patent No. 4,491,560, January 1 1985.

  9. Y. Hiraoka, T. Fujii, T. Kainuma, M. Okada, and R. Watanabee: in Physical Metallurgy and Technology of Molybdenum and Its Alloys, K.H. Miska, M. Semchyshen, E.P. Whelan, and D.J. Kruzich, eds., AMAX Inc., Ann Arbor, MI, 1985, pp. 81–86.

  10. J. R. Ciulik and E. M. Taleff: Sripta Materialia, 2009, vol. 61, pp. 895–898.

    Article  CAS  Google Scholar 

  11. J.R. Ciulik: Ph.D. Thesis, The University of Texas at Austin, August 2005.

  12. C. Musiol: Metals Technology, 1976, vol. 3, pp. 173–183.

    Article  Google Scholar 

  13. R. C. Gifkins: Nature, 1952, vol. 169, pp. 238–239.

    Article  Google Scholar 

  14. R.C. Gifkins: J. Inst. Met., 1953–54, vol. 82, pp. 39–47.

  15. R.C. Gifkins: J. Inst. Met., 1957–58, vol. 86, pp. 15–16.

  16. R.C. Gifkins: J. Inst. Met., 1958–59, vol. 87, pp. 255–61.

  17. R. C. Gifkins: Transactions of the Metallurgical Society of AIME, 1959, vol. 215, pp. 1015–1022.

    CAS  Google Scholar 

  18. J. R. Ciulik and E. M. Taleff: Materials Science and Engineering A, 2007, vol. 463, pp. 197–202.

    Article  Google Scholar 

  19. ASTM International: Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip and Foil, Standard Designation B 306–03, ASTM International, West Conshohocken, PA, 2003.

  20. ASTM International: Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys, Standard Designation E 1941–04, ASTM International, West Conshohocken, PA, 2004.

  21. ASTM International: Standard Test Methods for Determination of Carbon, Sulfur, Nitrogen, and Oxygen in Steel, Iron, Nickel, and Cobalt Alloys by Various Combustion and Fusion Techniques, Standard Designation E 1019–08, ASTM International, West Conshohocken, PA, 2008.

  22. D.L. Donohue and J.A. Carter: in Metals Handbook, 19th ed., vol. 10, J.R. Davis, ed., American Society for Metals, Metals Park, OH, 1986, pp. 141–50.

  23. R. L. Barto and L. J. Ebert: Metallurgical Transactions, 1971, vol. 2A, pp. 1643–1649.

    Google Scholar 

  24. ASTM International: Standard Test Methods for Determining Average Grain Size, Standard Designation E 112–96, ASTM International, West Conshohocken, PA, 1996.

  25. F. J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004, p. 334.

    Google Scholar 

  26. C.S. Barrett and T.B. Massalski: Structure of Metals: Crystallographic Methods, Principles and Data, 3rd revised ed., Pergamon Press, Oxford, UK, 1980.

  27. A.D. Rollett and S.I Wright: in Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Material Properties, U.F. Kocks, C.N. Tomé, and H.-R. Wenk, eds., Cambridge University Press, Cambridge, UK, 1998, pp. 178–238.

  28. E. Fjeldberg, E. A. Holm, A. D. Rollett and K. Marthinsen: Materials Science Forum, 2012, vol. 715–716, pp. 930–935.

    Article  Google Scholar 

  29. D. McLean: Nature, 1953, vol. 172, pp. 300–301.

    Article  Google Scholar 

  30. M. Winning, G. Gottstein, and L. S. Shvindlerman: Acta Materialia, 2001, vol. 49, pp. 211–219.

    Article  CAS  Google Scholar 

  31. M. Winning, G. Gottstein, and L. S. Shvindlerman: Materials Science and Engineering A, 2001, vol. A317, pp. 17–20.

    CAS  Google Scholar 

  32. M. Winning, G. Gottstein, and L. S. Shvindlerman: Acta Materialia, 2002, vol. 50, pp. 353–363.

    Article  CAS  Google Scholar 

  33. J. W. Cahn, Y. Mishin, and A. Suzuku: Philosophical Magazine, 2006, vol. 86, pp. 1–11.

    Article  Google Scholar 

  34. J. W. Cahn and J. E. Taylor: Acta Materialia, 2004, vol. 52, pp. 4887–4898.

    Article  CAS  Google Scholar 

  35. W.F. Gale and T.C. Totemeier, eds: Smithells Metals Reference Book, 18th ed., Elsevier, Butterworth-Heinemann, Burlington, MA, 2004, pp. 4–39.

  36. G. Gottstein and L. S. Shvindlerman. Grain Boundary Migration in Metals. CRC Press, New York, 1999.

    Google Scholar 

  37. J. Weertman: Trans. Metall. Soc. AIME, 1960, vol. 218, pp. 207–218.

    CAS  Google Scholar 

  38. J. Weertman: Journal of Applied Physics, 1957, vol. 28, pp. 362–364.

    Article  CAS  Google Scholar 

  39. J. Weertman: Journal of Applied Physics, 1957, vol. 28, pp. 1185–1189.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Foundation for experimental equipment supported under grant DMR-9974476 and research support under Grants DMR-0605731 and DMR-1105468. The authors thank Osram Sylvania for providing composition analysis services. The authors extend special thanks to Dr. James Ciulik for significant technical contributions to this study. EMT thanks Prof. Thomas R. Bieler for useful discussions on through-thickness texture variations in sheet materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Taleff.

Additional information

Manuscript submitted April 3, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worthington, D.L., Pedrazas, N.A., Noell, P.J. et al. Dynamic Abnormal Grain Growth in Molybdenum. Metall Mater Trans A 44, 5025–5038 (2013). https://doi.org/10.1007/s11661-013-1865-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1865-x

Keywords

Navigation