Skip to main content
Log in

Dynamic Abnormal Grain Growth in Refractory Metals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Musiol, Met. Technol. (London) 3, 173 (1976)

    Article  Google Scholar 

  2. J. Dennis, P.S. Bate, and J.F. Humphreys, Mater. Sci. Forum 558, 717 (2007)

    Article  Google Scholar 

  3. D. Davidson, R. Tryon, M. Oja, R. Matthews, and K.R. Chandran, Metall. Mater. Trans. A 38, 2214 (2007)

    Article  Google Scholar 

  4. A.D. Rollett, A.P. Brahme, and C. Roberts, Mater. Sci. Forum 558, 33 (2007)

    Article  Google Scholar 

  5. M. Hillert, Acta Metall. 13, 227 (1965)

    Article  Google Scholar 

  6. A. Rollett, D.J. Srolovitz, and M. Anderson, Acta Metall. 37, 1227 (1989)

    Article  Google Scholar 

  7. P. Lin, G. Palumbo, J. Harase, and K. Aust, Acta Mater. 44, 4677 (1996)

    Article  Google Scholar 

  8. A. Rollett and W. Mullins, Scr. Mater. 36, 975 (1997)

    Article  Google Scholar 

  9. F. Humphreys, Acta Mater. 45, 4231 (1997)

    Article  Google Scholar 

  10. T.A. Bennett, P.N. Kalu and A.D. Rollett et al., Microsc. Microanal. 17, 362 (2011)

    Article  Google Scholar 

  11. J. Ciulik and E. Taleff, Scr. Mater. 61, 895 (2009)

    Article  Google Scholar 

  12. D.L. Worthington, N.A. Pedrazas, P.J. Noell, and E.M. Taleff, Metall. Mater. Trans. A 44, 5025 (2013)

    Article  Google Scholar 

  13. N.A. Pedrazas, T.E. Buchheit, E.A. Holm, and E.M. Taleff, Mater. Sci. Eng. A 610, 76 (2014)

    Article  Google Scholar 

  14. N.A. Pedrazas, Dynamic Abnormal Grain Growth in Selected Refractory Metals, PhD thesis (The University of Texas at Austin, Austin, 2013), pp. 71–190

  15. D.L. Worthington, Characteristics of Dynamic Abnormal Grain Growth in Commercial-Purity Molybdenum, PhD thesis (The University of Texas at Austin, Austin, 2011) pp. 46–88

  16. T. Fujiwara, J. Sci. Hiroshima Univ., Ser. A, 9, 227 (1939)

    Google Scholar 

  17. J.E. May and D. Turnbull, Trans. Metall. Soc. AIME 212, 769 (1958)

    Google Scholar 

  18. P.J. Noell, The Morphology and Microstructure of Dynamic Abnormal Grain Growth in Commercial-Purity Molybdenum, Master’s thesis (The University of Texas at Austin, Austin, 2011), p. 106

  19. C.H. Li, E.H. Edwards, J. Washburn, and E.R. Parker, Acta Metall. 1, 223 (1953)

    Article  Google Scholar 

  20. M. Winning, G. Gottstein, and L. Shvindlerman, Acta Mater. 49, 211 (2001)

    Article  Google Scholar 

  21. A. Lim, M. Haataja, W. Cai, and D. Srolovitz, Acta Mater. 60, 1395 (2012)

    Article  Google Scholar 

  22. J. Czochralski, Z. Phys. Chem. 92, 219 (1918)

    Google Scholar 

  23. E.D.C Andrade, Proc. R. Soc. A 163, 16 (1937)

    Article  Google Scholar 

  24. L. Tsien and Y. Chow, Proc. R. Soc. A 163, 19 (1937)

    Article  Google Scholar 

  25. N. Chen, R. Maddin, and R. Pond, J. Met. 3, 937 (1951)

    Google Scholar 

  26. T. Fujii, R. Watanabe, Y. Hiraoka, and M. Okada, J. Less-Common Met. 96, 297 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Science Foundation for this work under Grant DMR-1105468 and for equipment acquired under DMR-9974476.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Noell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noell, P.J., Taleff, E.M. Dynamic Abnormal Grain Growth in Refractory Metals. JOM 67, 2642–2645 (2015). https://doi.org/10.1007/s11837-015-1592-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1592-4

Keywords

Navigation