Skip to main content
Log in

The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the \(\left\langle 110\right\rangle \) approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. F. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, New York, 2004)

    Google Scholar 

  2. M. Hillert, Acta Metall. 13, 227–238 (1965)

    Article  Google Scholar 

  3. P. Rios, G. Gottstein, Acta Mater. 49, 2511–2518 (2001)

    Article  Google Scholar 

  4. J.G. Byrne, Recovery, Recrystallization, and Grain Growth (The Macmillan, New York, 1965)

    Google Scholar 

  5. D. Dorner, S. Zaefferer, L. Lahn, D. Raabe, J. Magn. Magn. Mater. 304, 183–186 (2006)

    Article  Google Scholar 

  6. C. Musiol, Met. Technol. (Lond.) 3, 173–182 (1976)

    Article  Google Scholar 

  7. J. Dennis, P.S. Bate, J.F. Humphreys, Mater. Sci. Forum 558–559, 717–722 (2007)

    Article  Google Scholar 

  8. B. Flageolet, O. Yousfi, Y. Dahan, P. Villechaise, and J. Cormier: Superalloys 2012: The 12th International Symposium on Superalloys, 2012, pp. 594–606

  9. D. Davidson, R. Tryon, M. Oja, R. Matthews, K.R. Chandran, Metall. Mater. Trans. A 38A, 2214–2225 (2007)

    Article  Google Scholar 

  10. F. Humphreys, Acta Mater. 45, 4231–4240 (1997)

    Article  Google Scholar 

  11. A. Rollett, W. Mullins, Scripta Mater. 36, 975–980 (1997)

    Article  Google Scholar 

  12. A.D. Rollett, A.P. Brahme, C. Roberts, Mater. Sci. Forum 558, 33–42 (2007)

    Article  Google Scholar 

  13. A. Morawiec, Scripta Mater. 64, 466–469 (2011)

    Article  Google Scholar 

  14. Y.C. Zhu, J.H. Mao, F.T. Tan, X.L. Qiao, Appl. Mech. Mater. 127, 89–94 (2012)

    Article  Google Scholar 

  15. A. Morawiec, Scripta Mater. 43, 275–278 (2000)

    Article  Google Scholar 

  16. J. Ciulik, E. Taleff, Scripta Mater. 61, 895–898 (2009)

    Article  Google Scholar 

  17. D.L. Worthington, N.A. Pedrazas, P.J. Noell, E.M. Taleff, Metall. Mater. Trans. A 44A, 5025–5038 (2013)

    Article  Google Scholar 

  18. N.A. Pedrazas, T.E. Buchheit, E.A. Holm, E.M. Taleff, Mater. Sci. Eng. A 610, 76–84 (2014)

    Article  Google Scholar 

  19. P.J. Noell, D.L. Worthington, E.M. Taleff, Metall. Mater. Trans. A 46A, 5708–5718 (2015)

    Article  Google Scholar 

  20. ASTM International: Standard Specification for Molybdenum and Molybdenum Alloy Plate, Sheet, Strip and Foil, Standard Designation B 306–03 (ASTM International, West Conshohocken, PA, 2003)

    Google Scholar 

  21. ASTM International: Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys. Standard Designation E 1941-04, ASTM International, West Conshohocken, PA, 2004

  22. ASTM International, Standard Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys, Standard Designation E 1941–04 (ASTM International, West Conshohocken, PA, 2008)

    Google Scholar 

  23. D.L. Donohue, and J.A. Carter: Metals Handbook, 2nd ed., vol. 10. J.R. Davis, ed., American Society for Metals, Metals Park, OH, 1986, pp. 141–50

  24. D.L. Worthington: Characteristics of Dynamic Abnormal Grain Growth in Commercial-Purity Molybdenum, Ph.D. thesis (Austin, TX: The University of Texas at Austin, 2011) pp. 46–88

  25. N.A. Pedrazas: Dynamic Abnormal Grain Growth in Selected Refractory Metals, Ph.D. thesis, Austin, TX: The University of Texas at Austin, 2013, pp. 71–190

  26. HKL Channel 5: Oxford Instruments PLC, Oxon, U.K.

  27. Mathematica 8.0, Wolfram Research, Champaign, IL, 2010

  28. D. Brandon, Acta Metall. 14, 1479–1484 (1966)

    Article  Google Scholar 

  29. T.A. Bennett, A.D. Rollett, and P.N. Kalu: COM-2006 (Montreal), METSOC, 2006, pp. 217–227

  30. S.I. Wright, M.M. Nowell, D.P. Field, Microsc. Microanal. 17, 316–329 (2011)

    Article  Google Scholar 

  31. L. Delannay, O. Mishin, D.J. Jensen, P. Van Houtte, Acta Mater. 49, 2441–2451 (2001)

    Article  Google Scholar 

  32. ASTM International, Standard Test Methods for Determining Average Grain Size, Standard Designation E 112–13 (ASTM International, West Conshohocken, PA, 2013)

    Google Scholar 

  33. G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications, 2nd edn. (CRC Press, New York, 2009), pp. 140–144

    Book  Google Scholar 

  34. D.D. Sam, B.L. Adams, Metall. Trans. A 17, 513–517 (1986)

    Article  Google Scholar 

  35. J.-H. Cho, Y. Kim, K. Oh, J.-S. Cho, J.-T. Moon, J. Lee, Y. Cho, A. Rollett, Metall. Mater. Trans. A 34, 1113–1125 (2003)

    Article  Google Scholar 

  36. C. Merriman, D. Field, P. Trivedi, Mater. Sci. Eng. A 494, 28–35 (2008)

    Article  Google Scholar 

  37. L. Tsien, Y. Chow, Proc. R. Soc. A 163, 19–28 (1937)

    Article  Google Scholar 

  38. R. Maddin, N. Chen, J. Met. 200, 280–284 (1954)

    Google Scholar 

  39. A. Clauer, B. Wilcox, J. Hirth, Acta Metall. 18, 367–379 (1970)

    Article  Google Scholar 

  40. E. Zasimchuk, V. Krivenyuk, O. Marusii, Strength Mater. 6, 455–460 (1974)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the National Science Foundation for this work under Grants DMR-1105468 and DMR-1507417 and for equipment acquired under DMR-9974476. The authors extend special thanks to Dr. James Ciulik for significant technical contributions to this study. The FEI XL30 ESEM used in this work is from the Department of Geological Sciences, the University of Texas at Austin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Noell.

Additional information

Manuscript submitted March 30, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noell, P.J., Taleff, E.M. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo. Metall Mater Trans A 47, 5023–5036 (2016). https://doi.org/10.1007/s11661-016-3644-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3644-y

Keywords

Navigation