Skip to main content
Log in

Effect of Li Content on Hot-Tearing Susceptibility of Ternary Al-Cu-Li Alloys: Experimental Investigation, Criterion Prediction, and Simulation Assessment

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Al-Cu-Li alloys are promising structural materials due to their combined properties of low density and high specific strength. However, the severe hot-tearing susceptibility (HTS) during solidification inevitably deteriorates their casting quality. In this work, the influence of Li addition on the HTS of Al-2Cu-xLi (x = 0, 1, 2, 2.5, 3, and 4 wt pct) alloys was investigated by using a constrained rod-casting (CRC) apparatus equipped with a temperature-force acquisition system. Results revealed that the HTS does not follow the Λ-shaped curve with the addition of Li but exhibits an abnormal increase when Li exceeds 2.5 wt pct. Among the tested alloys, the Al-2Cu-2.5Li alloy shows the best hot-tearing resistance, while the Al-2Cu-4Li alloy presents the highest HTS. The experimental results were then compared with the predictions of Kou′s criterion and numerical simulation by using ProCAST software. These predictions are in good agreement with the experimental HTS for Li below 2.5 wt pct. However, they demonstrate a continuous decreasing trend with further increase of Li, which significantly deviates from the experimental curve. Further analysis indicated that the vulnerable temperature range is the most influential variable dominating HTS at low Li content. On the other hand, the abnormally severe HTS observed in high Li-containing alloys is attributed to the formation of Li-rich oxide inclusions, which induce strain localization between adjacent dendrites and obstruct liquid feeding in the mushy zone. In addition, the ratio curve of drop-in (DI) force to ultimate force exhibits a similar trend to the HTS curve, indicating that the severity of hot tearing can be predicted by evaluating the DI force/ultimate force ratio. These findings contribute to a profound understanding of the HTS in Al-Cu-Li alloys and are expected to provide reliable theoretical references for widespread applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. R.J. Rioja and J. Liu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3325–37. https://doi.org/10.1007/s11661-012-1155-z.

    Article  CAS  Google Scholar 

  2. T. Dursun and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862–71. https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  CAS  Google Scholar 

  3. J.R. Pickens: J. Mater. Sci., 1985, vol. 20, pp. 4247–58. https://doi.org/10.1007/BF00559316.

    Article  CAS  Google Scholar 

  4. A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen: J. Adv. Res., 2018, vol. 10, pp. 49–67. https://doi.org/10.1016/j.jare.2017.12.004.

    Article  CAS  Google Scholar 

  5. Y.J. Guo, J.F. Li, D.D. Lu, S.X. Deng, G.J. Zeng, Y.L. Ma, W. You, Y.L. Chen, X.H. Zhang, and R.F. Zhang: Mater. Charact., 2021, vol. 182, p. 111549. https://doi.org/10.1016/j.matchar.2021.111549.

    Article  CAS  Google Scholar 

  6. B. Ahmed and S.J. Wu: Appl. Mech. Mater., 2013, vol. 440, pp. 104–11. https://doi.org/10.4028/www.scientific.net/AMM.440.104.

    Article  CAS  Google Scholar 

  7. G.Y. Guo, Y. Li, H.R. Li, X.Y. Peng, J.F. Li, and G.F. Xu: Mater. Des., 2022, vol. 223, p. 111137. https://doi.org/10.1016/j.matdes.2022.111137.

    Article  CAS  Google Scholar 

  8. Q. Liu, C.Z. Chen, and J.Z. Cui: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 1389–94. https://doi.org/10.1007/s11661-005-0231-z.

    Article  CAS  Google Scholar 

  9. O. Grushko, B. Ovsyannikov, and V. Ovchinnikov: Aluminum-Lithium Alloys: process metallurgy, physical metallurgy, and welding, 1st ed. CRC Press, Boca Raton, UK, 2016, pp. 63–84.

    Book  Google Scholar 

  10. O. Grushko, L.A. Ivanova, and V.G. Kovalev: Tendency change trends for casting cracks depending on the composition of aluminum-lithium alloys, 4th ed. All-Russian Research Institute of Aviation Materials Publisher, Moscow, 1986, pp. 36–43.

    Google Scholar 

  11. I.I. Novikov: Hot brittleness of nonferrous metals and alloys, 1st ed. Nauka Publishers, Moscow, 1966, p. 299.

    Google Scholar 

  12. I.I. Novikov and O.E. Grushko: Mater. Sci. Technol., 1995, vol. 11, pp. 926–32.

    Article  CAS  Google Scholar 

  13. D.G. Eskin, V. Suyitno, and L. Katgerman: Prog. Mater. Sci., 2004, vol. 49, pp. 629–711. https://doi.org/10.1016/S0079-6425(03)00037-9.

    Article  CAS  Google Scholar 

  14. B. Hu, D.J. Li, Z.X. Li, X.Y. Wang, and X.Q. Zeng: Metall. Mater. Trans. A., 2022, vol. 53A, pp. 3478–92. https://doi.org/10.1007/s11661-022-06766-3.

    Article  CAS  Google Scholar 

  15. Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang: Prog. Mater. Sci., 2021, vol. 117, p. 100741. https://doi.org/10.1016/j.pmatsci.2020.100741.

    Article  CAS  Google Scholar 

  16. D.G. Eskin, V.I. Savran, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1965–76. https://doi.org/10.1007/s11661-005-0059-6.

    Article  CAS  Google Scholar 

  17. B. Hu, Z.X. Li, D.J. Li, T. Ying, X.Q. Zeng, and W.J. Ding: J. Mater. Sci. Technol., 2022, vol. 105, pp. 68–80. https://doi.org/10.1016/j.jmst.2021.06.071.

    Article  CAS  Google Scholar 

  18. M. Bagheri, M. Alizadeh, and A.R. Ahmadi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1856–63. https://doi.org/10.1007/s11661-017-3993-1.

    Article  CAS  Google Scholar 

  19. S. Suyitno, V.I. Savran, L. Katgerman, and D.G. Eskin: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3551–61. https://doi.org/10.1007/s11661-004-0192-7.

    Article  CAS  Google Scholar 

  20. D.G. Eskin, L. Katgerman, V. Suyitno, and J.F. Mooney: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1325–35. https://doi.org/10.1007/s11661-004-0307-1.

    Article  CAS  Google Scholar 

  21. B. Hu, D.J. Li, Z.X. Li, J.K. Xu, X.Y. Wang, and X.Q. Zeng: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 789–805. https://doi.org/10.1007/s11661-020-06101-8.

    Article  CAS  Google Scholar 

  22. C.Y. Yue, X.G. Yuan, M. Su, and Y.X. Wang: Mater. Charact., 2022, vol. 191, p. 112141. https://doi.org/10.1016/j.matchar.2022.112141.

    Article  CAS  Google Scholar 

  23. G. Chen, J.F. Jiang, Z.M. Du, F. Han, and H.V. Atkinson: Mater. Des., 2014, vol. 54, pp. 1–5. https://doi.org/10.1016/j.matdes.2013.08.010.

    Article  CAS  Google Scholar 

  24. Y. Li, Z.R. Zhang, Z.Y. Zhao, H.X. Li, L. Katgerman, J.S. Zhang, and L.Z. Zhuang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3603–16. https://doi.org/10.1007/s11661-019-05268-z.

    Article  CAS  Google Scholar 

  25. Y. Li, X. Gao, Z.R. Zhang, W.L. Xiao, H.X. Li, Q. Du, L. Katgerman, J.S. Zhang, and L.Z. Zhuang: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4744–54. https://doi.org/10.1007/s11661-017-4251-2.

    Article  CAS  Google Scholar 

  26. J.W. Liu and S. Kou: Acta Mater., 2016, vol. 110, pp. 84–94. https://doi.org/10.1016/j.actamat.2016.03.030.

    Article  CAS  Google Scholar 

  27. B. Hu, D.J. Li, J.Y. Wang, Z.X. Li, X.Y. Wang, and X.Q. Zeng: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 6658–69. https://doi.org/10.1007/s11661-020-06046-y.

    Article  CAS  Google Scholar 

  28. J.Q. Han, J.S. Wang, M.S. Zhang, and K.M. Niu: Materialia, 2019, vol. 5, p. 100203. https://doi.org/10.1016/j.mtla.2018.100203.

    Article  CAS  Google Scholar 

  29. Y.C. Xu, G.Y. Li, W.M. Jiang, J.M. Zhan, Y. Yu, and Z.T. Fan: J. Mater. Res. Technol., 2022, vol. 19, pp. 4063–75. https://doi.org/10.1016/j.jmrt.2022.06.148.

    Article  CAS  Google Scholar 

  30. S.B. Wu, Z.L. Lei, B.W. Li, J.W. Liang, and Y.B. Chen: Addit. Manuf., 2022, vol. 54, p. 102762. https://doi.org/10.1016/j.addma.2022.102762.

    Article  CAS  Google Scholar 

  31. P.G. Partridge: Int. Mater. Rev., 1990, vol. 35, pp. 37–58. https://doi.org/10.1179/095066090790323939.

    Article  Google Scholar 

  32. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55. https://doi.org/10.1007/s11661-999-0334-z.

    Article  CAS  Google Scholar 

  33. S. Kou: Acta Mater., 2015, vol. 88, pp. 366–74. https://doi.org/10.1016/j.actamat.2015.01.034.

    Article  CAS  Google Scholar 

  34. J.W. Liu and S. Kou: Acta Mater., 2017, vol. 125, pp. 513–23. https://doi.org/10.1016/j.actamat.2016.12.028.

    Article  CAS  Google Scholar 

  35. Y.X. Wang, G.H. Wu, L. Zhang, X. Tong, L.B. Li, X.M. Xiong, X.L. Zhang, and C.L. Wang: J. Mater. Res. Technol., 2022, vol. 21, pp. 4893–4907. https://doi.org/10.1016/j.jmrt.2022.11.079.

    Article  CAS  Google Scholar 

  36. J.S. Zhang, X.X. Zhong, L. Zhang, G.H. Wu, and W.C. Liu: Trans. Nonferrous Met. Soc. China, 2022, vol. 32, pp. 411–23. https://doi.org/10.1016/S1003-6326(22)65803-5.

    Article  CAS  Google Scholar 

  37. X.L. Zhang, L. Zhang, G.H. Wu, J.W. Sun, M. Rong, C. Hsieh, and Y.X. Yu: Mater. Charact., 2018, vol. 142, pp. 223–36. https://doi.org/10.1016/j.matchar.2018.05.046.

    Article  CAS  Google Scholar 

  38. X.L. Zhang, G.H. Wu, L. Zhang, and C.C. Shi: J. Alloys Compd., 2019, vol. 788, pp. 367–82. https://doi.org/10.1016/j.jallcom.2019.02.062.

    Article  CAS  Google Scholar 

  39. X.L. Zhang, L. Zhang, G.H. Wu, W.C. Liu, C.C. Shi, J.S. Tao, and J.W. Sun: Mater. Charact., 2017, vol. 132, pp. 312–19. https://doi.org/10.1016/j.matchar.2017.08.027.

    Article  CAS  Google Scholar 

  40. J.S. Zhang, G.H. Wu, L. Zhang, X.L. Zhang, C.C. Shi, and J.W. Sun: Mater. Charact., 2020, vol. 160, p. 110089. https://doi.org/10.1016/j.matchar.2019.110089.

    Article  CAS  Google Scholar 

  41. G. Cao, I. Haygood, and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2139–50. https://doi.org/10.1007/s11661-010-0248-9.

    Article  CAS  Google Scholar 

  42. G. Cao and S. Kou: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3647–63. https://doi.org/10.1007/s11661-006-1059-x.

    Article  CAS  Google Scholar 

  43. G. Cao and S. Kou: Mater. Sci. Eng. A, 2006, vol. 417, pp. 230–38. https://doi.org/10.1016/j.msea.2005.10.050.

    Article  CAS  Google Scholar 

  44. H. Choi, W. Cho, H. Konishi, S. Kou, and X.C. Li: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1897–1907. https://doi.org/10.1007/s11661-012-1531-8.

    Article  CAS  Google Scholar 

  45. E. Scheil: Int. J. Mater. Res., 1942, vol. 34, pp. 70–72. https://doi.org/10.1515/ijmr-1942-340303.

    Article  Google Scholar 

  46. Y. Zhou, P.L. Mao, Z. Wang, L. Zhou, F. Wang, and Z. Liu: J. Mater. Process Technol., 2021, vol. 297, p. 17259. https://doi.org/10.1016/j.jmatprotec.2021.117259.

    Article  CAS  Google Scholar 

  47. K. Wang, P.H. Fu, L.M. Peng, Y.X. Wang, and W.J. Ding: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5271–80. https://doi.org/10.1007/s11661-019-05408-5.

    Article  CAS  Google Scholar 

  48. X.D. Du, F. Wang, Z. Wang, L. Zhou, Z.Q. Wei, Z. Liu, and P.L. Mao: J. Alloys Compd., 2022, vol. 911, p. 165113. https://doi.org/10.1016/j.jallcom.2022.165113.

    Article  CAS  Google Scholar 

  49. Z. Wang, Y.Z. Li, F. Wang, Y.D. Huang, J.F. Song, P.L. Mao, and Z. Liu: Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 3115–22. https://doi.org/10.1016/S1003-6326(16)64443-6.

    Article  CAS  Google Scholar 

  50. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 297–300. https://doi.org/10.1115/1.3443401.

    Article  Google Scholar 

  51. S. Lin, C. Aliravci, and M.O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1056–68. https://doi.org/10.1007/s11661-007-9132-7.

    Article  CAS  Google Scholar 

  52. X.B. Zhang, P. Zhu, L. Zeng, B.G. Feng, X.B. Wan, and J.Q. Ren: Mater. Charact., 2020, vol. 168, p. 110552. https://doi.org/10.1016/j.matchar.2020.110552.

  53. J.F. Song, Z. Wang, Y.D. Huang, A. Srinivasan, F. Beckmann, K.U. Kainer, and N. Hort: Mater. Des., 2015, vol. 87, pp. 157–70. https://doi.org/10.1016/j.matdes.2015.08.026.

    Article  CAS  Google Scholar 

  54. J.Q. Han, J.S. Wang, M.S. Zhang, and K.M. Niu: Trans. Nonferrous Met. Soc. China, 2020, vol. 30, pp. 2311–25. https://doi.org/10.1016/S1003-6326(20)65381-X.

    Article  CAS  Google Scholar 

  55. N.E. Prasad, A. Gokhale, and R.J. Wanhill: Aluminum-lithium alloys: processing, properties, and applications, 1st ed., Butterworth-Heinemann, Elsevier Inc., Oxford, UK, 2013, pp. 167–85.

  56. N. Coniglio and C.E. Cross: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2718–28. https://doi.org/10.1007/s11661-009-9964-4.

    Article  CAS  Google Scholar 

  57. S. Hull, T.W.D. Farley, W. Hayes, and M.T. Hutchings: J. Nucl. Mater., 1988, vol. 160, pp. 125–34. https://doi.org/10.1016/0022-3115(88)90039-6.

    Article  CAS  Google Scholar 

  58. M.C. Billone, Y.Y. Liu, R.B. Poeppel, J.L. Routbort, K.C. Goretta, and D.S. Kupperman: J. Nucl. Mater., 1986, vol. 141–143, pp. 282–88. https://doi.org/10.1016/S0022-3115(86)80051-4.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the use of instruments and scientific and technical assistance at the Instrumental Analysis Center of Shanghai Jiao Tong University. Dr. Yihao Wang is warmly thanked for helping with the Pandat calculation and Dr. Yingxi Li is thanked for her help in obtaining XRD data. The authors would like to thank Ms. Xiao for the language assistance. This work was financially sponsored by the National Natural Science Foundation of China (Nos. 51821001 and 51871148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhang or Guohua Wu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhang, L., Wu, G. et al. Effect of Li Content on Hot-Tearing Susceptibility of Ternary Al-Cu-Li Alloys: Experimental Investigation, Criterion Prediction, and Simulation Assessment. Metall Mater Trans A 54, 4850–4867 (2023). https://doi.org/10.1007/s11661-023-07207-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07207-5

Navigation