Skip to main content
Log in

A Study on Hot Tearing Behavior of Al-1 Wt Pct Cu Alloy Under Various Strain Rates During Casting Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Objective of this work is to study the generation of hot tears during solidification of Al-1 wt pct Cu alloy, which contain both columnar and equiaxed structures at various strain rates. To reach this goal, an experimental test was designed for applying tensile load on the solidifying shell. The shells were loaded at various pull-rates of 0.1, 0.2, and 0.3 mm/s. The produced samples were studied using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy probe and metallography techniques. SEM images revealed that both segregated hot tear (i.e., filled or healed crack) and open hot tears were formed. Hot tears had created severely segregated zones with high concentration of Cu and Fe elements formed in between dendrite arms along the primary grain boundaries. In all cases, open hot tears were formed due to cracking of the segregated zones. With increasing strain rate, lengths of segregated hot tears were increased, moving closer toward the center of the cast. At the highest strain rate, segregated hot tears were formed in the equiaxed grain region along the primary grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \dot{\varepsilon } \) :

Strain rate (s−1)

V :

Separation rate (mm/s)

H :

Height (mm)

ρ :

Mass density (kg/m3)

T :

Temperature (K)

t :

Time (seconds)

r :

Radial distance (m)

K :

Thermal conductivity (W/m K)

c′:

Equivalent heat capacity (J/kg K)

c :

Specific heat (J/kg K)

L :

Latent heat (J/kg)

T l :

Liquidus temperature (K)

T s :

Solidus temperature (K)

f s :

Solid fraction

k 0 :

Equilibrium partition coefficient

T pouring :

Pouring temperature (K)

h :

Transient transfer coefficient (J/m2 K)

T :

Ambient temperature (K)

References

  1. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19. doi:10.1007/s11661-007-9169-7.

    Article  Google Scholar 

  2. J.G. Kaufman and E.L. Rooy: Aluminum Alloy Castings Properties, Processes, and Applications, ASM International, Materials Park, 2004.

    Google Scholar 

  3. F. D’Elia, C. Ravindran, and D. Sediako: Mater. Sci. Eng. A, 2015, vol. 624, pp. 169–80. doi:10.1016/j.msea.2014.11.057.

    Article  Google Scholar 

  4. S. Li, K. Sadayappan, and D. Apelian: Mater. Trans. B, 2013, vol. 44, pp. 614–23. doi:10.1007/s11663-013-9801-4.

    Article  Google Scholar 

  5. X. Zhang, J. Sun, M. Wang, Y. Zhang, N. Ma, and H. Wang: J. Rare Earth, 2015, vol. 33, pp. 1335–40. doi:10.1016/S1002-0721(14)60566-4.

    Article  Google Scholar 

  6. A. Stangeland, A. Mo, M. M’Hamdi, D. Viano, and C. Davidson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 705–14. doi:10.1007/s11661-006-0042-x.

    Article  Google Scholar 

  7. H. Kamguo Kamga, D. Larouche, M. Bournane, and A. Rahem: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7413–23. doi:10.1016/j.msea.2010.08.025.

    Article  Google Scholar 

  8. M.R. Nasr-Esfahani and B. Niroumand: Mater. Charact., 2010, vol. 61, pp. 318–24. doi:10.1016/j.matchar.2009.12.015.

    Article  Google Scholar 

  9. D.G. Eskin, V.I. Savran, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1965–76. doi:10.1007/s11661-005-0059-6.

    Article  Google Scholar 

  10. Suyitno, D.G. Eskin, V.I. Savran and L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3551–61. doi:10.1007/s11661-004-0192-7.

    Article  Google Scholar 

  11. O. Ludwig, J.M. Drezet, C.L. Martin, and M. Suery: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1525–35. doi:10.1007/s11661-005-0244-7.

    Article  Google Scholar 

  12. J.M. Drezet, B. Mireux, Z. Szaraz, and T. Pirling: JOM J. Miner. Met. Mater. Soc., 2014, vol. 66, pp. 1425–30. doi:10.1007/s11837-014-1018-8.

    Article  Google Scholar 

  13. J. Campbell: Castings, 2nd ed., Butterworth-Heinemann, Oxford, 2003.

    Google Scholar 

  14. M. Merlin: Frattura Integrità Strutturale, 2010, vol. 14, pp. 64–74.

    Google Scholar 

  15. X. Yan and J.C. Lin: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 913–18. doi:10.1007/BF02735013.

    Article  Google Scholar 

  16. V.R. Voller and C.R. Swaminathan: Numer. Heat Transf. B, 1991, vol. 19, pp. 175–89. doi:10.1080/10407799108944962.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Alizadeh.

Additional information

Manuscript submitted September 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, M., Alizadeh, M. & Ahmadi, A.R. A Study on Hot Tearing Behavior of Al-1 Wt Pct Cu Alloy Under Various Strain Rates During Casting Process. Metall Mater Trans A 48, 1856–1863 (2017). https://doi.org/10.1007/s11661-017-3993-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3993-1

Keywords

Navigation