Skip to main content
Log in

Hot Tearing Behavior in Double Ternary Eutectic Alloy System: Al-Mg-Si Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot tearing behavior of the double ternary eutectic alloy system, Al-6Mg-xSi (0 to 6.0 wt pct Si) alloys, was evaluated by a constrained rod casting mold equipped with a thermocouple and a load cell connected to a data acquisition system. Experimental results were compared with the results calculated by Scheil’s model using Pandat software to predict the occurrence of hot tearing in Al-6Mg-xSi alloys. The curve of hot tearing susceptibility contained two peaks, which were mainly affected by the double ternary eutectic reactions and the solidification phases evolution. And it agreed with the Kou’s hot tearing index precisely. The types and fractions of solidification phases (Al3Mg2, Mg2Si, and eutectic Si) determined by the addition of Si content changed the freezing range and eutectic liquid fraction greatly. In addition, the types, fractions, sizes, and distributions of solidification phases affected the nucleation, propagation, and healing of hot tear cracks. The maximum contraction force value decreased as the reduction of volume shrinkage coefficient due to the addition of Si content. The drop-in force value on the contraction force curve could indicate the occurrence of hot tearing, and predict the hot tearing susceptibility when considering the shrinkage coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. O. Engler, J. Hirsch: Mater. Sci. Eng. A, 2002, vol. 336, pp. 249-262.

    Article  Google Scholar 

  2. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge: Mater. Sci. Eng. A, 2000, vol. 280, pp. 37-49.

    Article  Google Scholar 

  3. A.H. Musfirah, A.G. Jaharah: J. Appl. Sci. Res., 2012, vol. 8, pp. 4865-75.

    CAS  Google Scholar 

  4. J. Cui, H.J. Roven: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 2057-63.

    Article  CAS  Google Scholar 

  5. M. Tisza and I. Czinege: Int. J. Lightweight Mater. and Manuf., 2018, vol. 1, pp. 229-38.

    Google Scholar 

  6. O. Trudonoshyn, O. Prach: Heliyon, 2019, vol. 5, pp. 1-12.

    Article  Google Scholar 

  7. G.B. Burger, A.K. Gupta, P.W. Jeffrey, and D.J. Lloyd: Mater. Charact., 1995, vol. 35, pp. 23-39.

    Article  CAS  Google Scholar 

  8. S. Ji, F. Yan, and Z. Fan: Mater. Sci. Eng. A, 2014, vol. 626, pp. 165-74.

    Article  Google Scholar 

  9. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Butterworth, London, 1976.

    Google Scholar 

  10. J. Campbell: Castings, Butterworth-Heinemann, Oxford, United Kingdom, 1991.

    Google Scholar 

  11. Z. Shi, W.J. Kim, F. Cao, M.S. Dargusch, A. Atrens: J. Magnes. Alloys, 2015, vol. 3, pp. 271-282.

    Article  CAS  Google Scholar 

  12. F. D’Elia, C. Ravindran, D. Sediako: Mater. Sci. Eng. A, 2015, vol. 624, pp. 169-180.

    Article  Google Scholar 

  13. Eskin DG, Suyitno S, Mooney JF, Katgerman L (2004) Metall Mater Trans A 35A:1325-35

    Article  CAS  Google Scholar 

  14. G. Cao, C. Zhang, H. Cao, Y.A. Chang and S. Kou: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 706-16.

    Article  CAS  Google Scholar 

  15. J.W. Liu and S. Kou: Acta Mater., 2015, vol. 100, pp. 359-68.

    Article  CAS  Google Scholar 

  16. J. Vero: Met. Ind., 1936, vol. 48, pp. 431-42.

    CAS  Google Scholar 

  17. I.I. Novikov: Hot shortness of non-ferrous metals and alloy, Moscow, Nauka, 1966, pp. 299.

    Google Scholar 

  18. A.R.E. Singer and P.H. Jennings: J. Inst. Met., 1947, vol. 73, pp. 197-212.

    Google Scholar 

  19. W.I. Pumphrey, J.V. Lyons: J. Inst. Met., 1947, vol. 74, pp. 439-55.

    Google Scholar 

  20. R.A. Rosenberg, M.C. Flemings, and H.F. Taylor: Trans. AFS, 1960, vol. 68, pp. 518-28.

    Google Scholar 

  21. P.H. Jennings, A.R.E. Singer, W.I. Pumphrey: J. Inst. Met., 1947, vol. 74, pp. 227-47.

    Google Scholar 

  22. M.A. Easton, H. Wang, J. Grandfield, C.J. Davidson, D.H. Stjohn, L.D. Sweet and M.J. Couper: Metall. and Mater. Trans. A, 2012, vol. 43, pp. 3227-38.

    Article  Google Scholar 

  23. T.W. Clyne, G.J. Davies: Solidification and casting of metals, The Metals Society, London, 1979, pp. 275-78.

    Google Scholar 

  24. J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, Y. Lu: J. Magnes. Alloy., 2016, vol. 4, pp. 151-72.

    Article  CAS  Google Scholar 

  25. M.O. Pekguleryuz, P. Vermette: Trans. AFS, 2006, vol. 114, pp. 729-36.

    CAS  Google Scholar 

  26. W.I. Pumphrey, P.H. Jennings: J. Inst. Met., 1948, vol. 75, pp. 235-56.

    CAS  Google Scholar 

  27. S. Li, D. Apelian: Int. J. Metalcasting, 2011, vol. 11, pp. 23-40.

    Google Scholar 

  28. S. Kou: Acta Mater., 2015, vol. 88, pp. 366-374.

    Article  CAS  Google Scholar 

  29. M. Rappaz, J.M. Drezet and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449-55.

    Article  CAS  Google Scholar 

  30. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, 1974, pp. 252-56.

    Google Scholar 

  31. CompuTherm (2001) Pandat-Phase Diagram Calculation Software Package for Multicomponent Systems. CompuTherm LLC, Madison, WI

    Google Scholar 

  32. Vinodh G, Jafari Nodooshan HR, Li DJ, Zeng XQ, Hu B, Carter JT, Sachdev AK (2020) Metall Mater Trans A 51A:1897-1910

    Article  Google Scholar 

  33. D. Argo, M. Pekguleryuz, P. Vermette, and M. Lefebvre: Die Casting 2001, Oct. 29–Nov. 1, 2001, Cincinnati, OH, pp. 181–86.

  34. Eskin DG, Suyitno S, Katgerman L (2004) Prog Mater Sci 49:629-711

    Article  CAS  Google Scholar 

  35. J.W. Liu, S. Kou: Acta Mater., 2016, vol. 110, pp. 84-94.

    Article  CAS  Google Scholar 

  36. Z. Wang, J.F. Song, Y.D. Huang, A. Srinivasan, Z. Liu, K.U. Kainer, and N. Hort: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 2108-18.

    Article  Google Scholar 

  37. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer and N. Hort: Mater. Des., 2013, vol. 47, pp. 90-100.

    Article  CAS  Google Scholar 

  38. J.F. Song, Z. Wang, Y.D. Huang, A. Srinivasan, F. Beckmann, K.U. Kainer, and N. Hort: Mater. Des., 2015, vol. 87, pp. 157-70.

    Article  CAS  Google Scholar 

  39. G. Cao and S. Kou: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3647-63.

    Article  CAS  Google Scholar 

  40. M.A. Easton, J.F. Grandfield, D.H. StJohn, and B. Rinderer: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1675-80.

    Article  Google Scholar 

  41. M. Bassan, B. Buonomo, G. Cavallari, E. Coccia, S. D’Antonio, V. Fafone, L. G. Foggetta, C. Ligi, A. Marini, G. Mazzitelli, G. Modestino, G. Pizzella, L. Quintieri, F. Ronga and P. Valente: Int. J. Mod. Phys. B, 2012, vol. 27, pp. 1491-77.

    Google Scholar 

  42. Z.S. Zhen, N. Hort, Y.D. Huang, N. Petri, O. Utke and K.U. Kainer: Mater. Sci. Forum., 2009, vols. 618-619, pp. 533-40.

    Article  Google Scholar 

Download references

Acknowledgments

The National Key R&D Program (No. 2016YFB0101704) supported by the Ministry of Science and Technology of China is acknowledged. This work was funded by the National Natural Science Foundation of China (No. 51825101) and Shanghai Science and Technology Committee (No. 18511109302). D.J. Li acknowledges the financial support from Minth Group through the Collaborative Project “Development of super vacuum die casting technologies used for Al alloys shock tower.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejiang Li or Xiaoqin Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 13, 2020; accepted November 2, 2020.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Li, D., Li, Z. et al. Hot Tearing Behavior in Double Ternary Eutectic Alloy System: Al-Mg-Si Alloys. Metall Mater Trans A 52, 789–805 (2021). https://doi.org/10.1007/s11661-020-06101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06101-8

Navigation