Skip to main content
Log in

The Impact of Rolling at Temperature on Conductivity and Texture in Nanolamellar Cu/Nb Bimetallic Composites

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Warm rolling is used to identify whether reductions in dislocation content would provide a significant impact on conductivity in accumulatively roll-bonded Cu-Nb nanolaminates. In addition, the impact of temperature on mechanical properties and interfacial texture is also quantified. Although temperature has a strong effect on dislocation content and mechanical properties, it is shown that length scale and volume fraction are most critical to defining the conductivity of the nanolaminate. Rolling at temperature reduced the flow stress of the material while maintaining the interfacial and layer structure, indicating that warm rolling can increase the ability to process the nanolaminates without reducing conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, p. 579.

    Article  CAS  Google Scholar 

  2. S.M. Ghalehbandi, M. Malaki, and M. Gupta: Appl. Sci., 2019, vol. 9, p. 3627.

    Article  CAS  Google Scholar 

  3. C.C. Tsuei: J. Appl. Phys., 1974, vol. 45, p. 1385.

    Article  CAS  Google Scholar 

  4. W.A. Spitzig, A.R. Pelton, and F.C. Laabs: Acta Metall., 1987, vol. 35, p. 2427.

    Article  CAS  Google Scholar 

  5. I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock: JOM, 2012, vol. 64, p. 1192.

    Article  CAS  Google Scholar 

  6. K. Han, J. Embury, J. Sims, L. Campbell, H. Schneider-Muntau, V. Pantsyrnyi, A. Shikov, A. Nikulin, and A. Vorobieva: Mater. Sci. Eng. A, 1999, vol. 267, p. 99.

    Article  Google Scholar 

  7. K. Han, V. Toplosky, R. Walsh, C. Swenson, B. Lesch, and V. Pantsyrni: IEEE Trans. Appl. Supercond., 2002, vol. 12, p. 1176.

    Article  Google Scholar 

  8. C. Ding, J. Xu, D. Shan, B. Guo, T. Langdon, Composites Part B, 2021, vol. 211, p. 108662.

  9. C. Ding, J. Xu, X. Li, D. Shan, B. Guo, and T. Langdon: Adv. Eng. Mater., 2020, vol. 22, p. 1900702.

    Article  CAS  Google Scholar 

  10. T. Nizolek, I.J. Beyerlein, N.A. Mara, J.T. Avallone, T.M. Pollock: Appl. Phys. Lett. 2016, 108, 051903.

  11. T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, J.E. Scott, and T.M. Pollock: Metallograph. Microstruct. Anal.., 2014, vol. 3, p. 470.

    Article  CAS  Google Scholar 

  12. J.S. Carpenter, R.J. McCabe, S.J. Zheng, T.A. Wynn, N.A. Mara, and I.J. Beyerlein: Metall. Mater. Trans. A., 2014, vol. 45, p. 2192.

    Article  CAS  Google Scholar 

  13. D. Gall: Journal of Applied Physics, 2016, 119, 085101.

  14. B. Gao, Q. Lai, Y. Cao, R. Hu, L. Xiao Z. Pan, N. Liang, Y. Li, G. Sha, M. Liu, H. Zhou, X. Wu, Y. Zhu: Sci. Adv., 2020, 6, eaba8169.

  15. L. Wang, Q. Du, C. Li, X. Cui, X. Zhao, and H. Yu: Transactions of Nonferrous Metals Society of China., 2019, vol. 29, p. 1621.

    Article  CAS  Google Scholar 

  16. M. Abbasi and S.A. Sajjadi: J. Mater. Eng. Perform., 2018, vol. 27, p. 3508.

    Article  CAS  Google Scholar 

  17. J.S. Carpenter, S.J. Zheng, R.F. Zhang, S.C. Vogel, I.J. Beyerlein, and N.A. Mara: Phil. Mag., 2013, vol. 93, p. 718.

    Article  CAS  Google Scholar 

  18. H.R. Wenk, L. Lutterotti, and S.C. Vogel: Nuclear Instruments Methods Phys. Res. Sec. A., 2003, vol. 5151, p. 575.

    Google Scholar 

  19. S.C. Vogel, C. Hartig, L. Lutterotti, R.B. Dreele, H.R. Wenk, and D.J. Williams: Powder Diffr., 2004, vol. 19, p. 5.

    Google Scholar 

  20. J.S. Carpenter, S.C. Vogel, J.E. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara: Acta Mater., 2012, vol. 60, p. 1576.

    Article  CAS  Google Scholar 

  21. S. Takajo, D.W. Brown, B. Clausen, G.T. Gray III., C.M. Knapp, D.T. Martinez, C.P. Trujillo, and S.C. Vogel: Powder Diffr., 2018, vol. 33, p. 141.

    Article  CAS  Google Scholar 

  22. S.J. Zheng, J.S. Carpenter, R.J. McCabe, I.J. Beyerlein, and N.A. Mara: Sci. Rep., 2014, vol. 4, p. 4226.

    Article  Google Scholar 

  23. A. Misra, J.P. Hirth, and H. Kung: Philos. Mag. A., 2002, vol. 82, p. 2935.

    Article  CAS  Google Scholar 

  24. O. Engler and V. Randle: Introduction To Texture Analysis, 2nd ed. CRC Press, Boca Raton, Florida, 2010, pp. 147–71.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract 89233218CNA000001. This work was funded through Los Alamos National Laboratory Directed Research and Development (LDRD) projects ER20200375.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Carpenter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpenter, J.S., Miller, C., Savage, D.J. et al. The Impact of Rolling at Temperature on Conductivity and Texture in Nanolamellar Cu/Nb Bimetallic Composites. Metall Mater Trans A 53, 2208–2213 (2022). https://doi.org/10.1007/s11661-022-06662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06662-w

Navigation