Skip to main content
Log in

Mechanical Properties and Interface Evaluation of Al/AZ31 Multilayer Composites Produced by ARB at Different Rolling Temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Many researchers have studied the microstructure and mechanical properties of Al/Mg composites rolled at a unique temperature; however, the effect of rolling temperature, which is one of the more decisive accumulative roll bonding (ARB) parameters, has not been investigated. In this work, laminated Al/Mg composites were fabricated by ARB at different temperatures using AZ31 magnesium alloy and commercially pure aluminum sheets. The microstructure of the layers and the mechanical properties of the rolled Al/AZ31 composites were investigated. Tensile and bending properties of the multilayer materials were examined by tensile and three-point bending tests. The results showed that mechanical bonding of the layers was improved with increasing rolling temperature. As a result, the intermediate rolling temperature (300 °C) indicated the best mechanical properties. Moreover, hot rolling caused an accelerated formation of intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan, and X.J. Wang, Low Frequency Damping Capacities and Mechanical Properties of Mg–Si Alloys, Mater. Sci. Eng. A, 2007, 452–453, p 374–379

    Article  Google Scholar 

  2. J. Koike and R. Ohyama, Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature, Acta Mater., 2005, 53, p 1963–1972

    Article  Google Scholar 

  3. S.H. Ghaderi, A. Mori, and K. Hokamoto, Analysis of Explosively Welded Aluminum–AZ31 Magnesium Alloy Joints, Mater. Trans., 2008, 49, p 1142–1147

    Article  Google Scholar 

  4. M.C. Chen, H.C. Hsieh, and W. Wu, The Evolution of Microstructures and Mechanical Properties During Accumulative Roll Bonding of Al/Mg Composite, J. Alloys Compd., 2006, 416, p 169–172

    Article  Google Scholar 

  5. M.C. Chen, C.W. Kuo, C.M. Chang, C.C. Hsieh, Y.Y. Chang, and W. Wu, Diffusion and Formation of Intermetallic Compounds During Accumulative Roll-Bonding of Al/Mg Alloys, Mater. Trans., 2007, 48, p 2595–2598

    Article  Google Scholar 

  6. H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and Mechanical Properties of the Mg/Al Multilayer Fabricated by Accumulative Roll Bonding (ARB) at Ambient Temperature, Mater. Sci. Eng. A, 2012, 543, p 249–256

    Article  Google Scholar 

  7. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and Mechanical Properties of the Mg/Al Laminated Composite Fabricated by Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2010, 527, p 3073–3078

    Article  Google Scholar 

  8. H.S. Liu, B. Zhang, and G.P. Zhang, Microstructures and Mechanical Properties of Al/Mg Alloy Multilayered Composites Produced by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2011, 27(1), p 15–21

    Article  Google Scholar 

  9. X.P. Zhang, S. Castagne, T.H. Yang, C.F. Gu, and J.T. Wang, Entrance Analysis of 7075 Al/Mg–Gd–Y–Zr/7075 Al Laminated Composite Prepared by Hot Rolling and Its Mechanical Properties, Mater. Des., 2011, 32, p 1152–1158

    Article  Google Scholar 

  10. P.F. Thomason, G. Rauchs, and P.J. Withers, Multi-Scale Finite-Element Modelling of Fatigue-Crack Growth in TiAl Intermetallic Matrix TiNb and Nb Platelet Composites, Acta Mater., 2002, 50, p 1453–1456

    Article  Google Scholar 

  11. M.C. Chen, C.C. Hsieh, and W.T. Wu, Microstructural Characterization of Al/Mg Alloy Interdiffusion Mechanism During Accumulative Roll Bonding, Met. Mater. Int., 2007, 13, p 201–205

    Article  Google Scholar 

  12. M. Abbasi and M.R. Toroghinejad, Effects of Processing Parameters on the Bond Strength of Cu/Cu Roll-Bonded Strips, J. Mater. Process. Technol., 2010, 210, p 560–563

    Article  Google Scholar 

  13. N. Bay, Cold Welding, Part 1, Characteristics, Bonding Mechanisms, Bond Strength, Met. Constr., 1986, 18, p 369–371

    Google Scholar 

  14. J.H. Perepezko, K.E. Kimme, and R.J. Hebert, Deformation Alloying and Transformation Reactions, J. Alloys Compd., 2009, 483, p 14–19

    Article  Google Scholar 

  15. J.L. Murray, The Al-Mg (Aluminum–Magnesium) System, Bull. Alloy Phase Diagr., 1982, 3, p 60–74

    Article  Google Scholar 

  16. C. Li, C. Chi, P. Lin, H. Zhang, and W. Liang, Deformation Behavior and Interface Microstructure Evolution of Al/Mg/Al Multilayer Composite Sheets During Deep Drawing, Mater. Des., 2015, 77, p 15–24

    Article  Google Scholar 

  17. Y.J. Li, P. Liu, J. Wang, and H.J. Ma, XRD and SEM Analysis Near the Diffusion Bonding Interface of Mg/Al Dissimilar Materials, Vacuum, 2008, 8, p 15–19

    Google Scholar 

  18. H. Matsumoto, S. Watanabe, and S. Hanada, Fabrication of Pure Al/Mg-Li Alloy Clad Plate and Its Mechanical Properties, J. Mater. Process. Technol., 2005, 169, p 9–15

    Article  Google Scholar 

  19. Ö. Yazar, T. Ediz, and T. Öztürk, Control of Macrostructure in Deformation Processing of Metal/Metal Laminates, Acta Mater., 2005, 53, p 375–381

    Article  Google Scholar 

  20. M. Reihanian and M. Naseri, An analytical Approach for Necking and Fracture of the Hard Layer During Accumulative Roll Bonding (ARB) of the Metallic Multilayer, Mater. Des., 2016, 89, p 1213–1222

    Article  Google Scholar 

  21. J. Ma, X. Yang, Q. Huo, H. Sun, J. Qin, and J. Wang, Mechanical Properties and Grain Growth Kinetics in Magnesium Alloy After Accumulative Compression Bonding, Mater. Des., 2013, 47, p 505–509

    Article  Google Scholar 

  22. R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, and J.A. Szpunar, Investigation of Nanostructured Al/Al2O3 Composite Produced by Accumulative Roll Bonding Process, Mater. Des., 2012, 35, p 37–42

    Article  Google Scholar 

  23. M.R. Toroghinejad, R. Jamaati, J. Dutkiewicz, and J.A. Szpunar, Investigation of Nanostructured Aluminum/Copper Composite Produced by Accumulative Roll Bonding and Folding Process, Mater. Des., 2013, 51, p 274–279

    Article  Google Scholar 

  24. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Oxford, 2004

    Google Scholar 

  25. K.T. Park, H.J. Kwon, W.J. Kim, and Y.S. Kim, Microstructural Characteristics and Thermal Stability of Ultrafine Grained 6061 Al Alloy Fabricated by Accumulative Roll Bonding Process, Mater. Sci. Eng. A., 2001, 316, p 145–152

    Article  Google Scholar 

  26. N.V. Govindaraj, J.G. Frydendahl, and B. Holmedal, Layer Continuity in Accumulative Roll Bonding of Dissimilar Material Combinations, Mater. Des., 2013, 52, p 905–915

    Article  Google Scholar 

  27. Y.F. Sun, N. Tsuji, H. Fujii, and F.S. Li, Cu/Zr Nanoscaled Multi-stacks Fabricated by Accumulative Roll Bonding, J. Alloys Compd., 2010, 504S, p S443–S447

    Article  Google Scholar 

  28. H. Yan and J.G. Lenard, A Study of Warm and Cold Roll-Bonding of Aluminum Alloy, J. Mater. Sci. Eng. A., 2004, 385, p 419–428

    Article  Google Scholar 

  29. A.K. Chaubey, P.K. Gokuldoss, Zh Wang, S. Scudino, N.K. Mukhopadhyay, and J. Eckert, Effect of Particle Size on Microstructure and Mechanical Properties of Al-Based Composite Reinforced with 10 Vol.% Mechanically Alloyed Mg-7.4%Al Particles, Technologies, 2016, 4, p 37–44

    Article  Google Scholar 

  30. N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344

    Article  Google Scholar 

  31. Z.P. Xing, S.B. Kang, and H.W. Kim, Structure and Properties of AA3003 Alloy Produced by Accumulative Roll Bonding Process, J. Mater. Sci., 2002, 37, p 717–722

    Article  Google Scholar 

  32. L.M. Zhao and Z.D. Zhang, Effect of Zn Alloy Interlayer on Interface Microstructure and Strength of Diffusion-Bonded Mg-Al Joints, Scr. Mater., 2008, 58, p 283–286

    Article  Google Scholar 

  33. V. Yousefi Mehr, M.R. Toroghinejad, and A. Rezaeian, Mechanical Properties and Microstructure Evolutions of Multilayered Al-Cu Composites Produced by Accumulative Roll Bonding Process and Subsequent Annealing, J. Mater. Sci. Eng. A, 2014, 601, p 40–47

    Article  Google Scholar 

  34. F.H. Kavarana, K.S. Ravichandran, and S.S. Sahay, Nanoscale Steel–Brass Multilayer Laminates Made by Cold Rolling: Microstructure and Tensile Properties, Scr. Mater., 2000, 42, p 947–954

    Article  Google Scholar 

  35. J.M. Lee, B.R. Lee, and S.B. Kang, Control of Layer Continuity in Metallic Multilayers Produced by Deformation Synthesis Method, Mater. Sci. Eng. A, 2005, 406, p 95101

    Article  Google Scholar 

  36. M. Alizadeh and M. Samiei, Fabrication of Nanostructured Al/Cu/Mn Metallic Multilayer Composites by Accumulative Roll Bonding Process and Investigation of Their Mechanical Properties, Mater. Des., 2014, 56, p 680–684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Sajjadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Sajjadi, S.A. Mechanical Properties and Interface Evaluation of Al/AZ31 Multilayer Composites Produced by ARB at Different Rolling Temperatures. J. of Materi Eng and Perform 27, 3508–3520 (2018). https://doi.org/10.1007/s11665-018-3423-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3423-6

Keywords

Navigation