Skip to main content
Log in

Processing Parameter Influence on Texture and Microstructural Evolution in Cu-Nb Multilayer Composites Fabricated via Accumulative Roll Bonding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A combination of accumulative roll bonding and rolling is used to fabricate bulk sheets of multilayer Cu-Nb bimetallic composites. Alterations in the processing sequence are made in comparison with prior studies in order to expand the processing window available for bimetallic multilayer composites. Cu-Nb composites with layer thicknesses ranging from 45 μm to 10 nm with accompanying total strains of 3.8 to 12.21 are characterized via neutron diffraction, electron back scatter diffraction, and transmission electron microscopy. These characterization methods provide microstructural information such as layer morphology and grain morphology as well as orientation information such as texture and interface plane normal distribution. The evolution of these microstructural characteristics is collected as a function of increasing strain. These results can provide guidance, inputs, and validation for multiscale predictive models that are being developed on materials with interfacially-driven properties. Finally, synthesis pathways are presented that allow the fabrication of nanoscale multilayer composites with predominant interfacial structures. These fabricated materials are ideal for exploring the relative importance between inter-phase interfacial density and atomic interfacial structure in determining material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD. Scr. Mater. 39 (1998) 555.

    Article  Google Scholar 

  2. Clemens BM, Kung H, Barnett SA. MRS Bull. 24 (1999) 20.

    Google Scholar 

  3. Anderson PM, Bingert JF, Misra A, Hirth JP. Acta Mater. 51 (2003) 6059.

    Article  Google Scholar 

  4. Misra A, Hoagland RG, Kung H. Philos. Mag. 84 (2004) 1021.

    Article  Google Scholar 

  5. Misra A, Hoagland RG, J. Magn. Reson. 20 (2005) 2046.

    Google Scholar 

  6. Zhang X, Li N, Anderoglu O, Wang H, Swadener JG, Hochbauer T, Misra A, Hoagland RG. Nucl. Instrum. Methods Phys. Res. B 261 (2007) 1129.

    Article  Google Scholar 

  7. Misra A, Demkowicz MJ, Zhang X, Hoagland RG. JOM 59 (2007) 62.

    Article  Google Scholar 

  8. [8] Misra A, Hoagland RG. J. Mater. Sci. 42 (2007) 1765.

    Article  Google Scholar 

  9. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A, Appl. Phys. Lett. 92 (2008) 231901.

    Article  Google Scholar 

  10. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A, Mater. Sci. Forum 633-634 (2009) 647.

    Article  Google Scholar 

  11. Han WZ, Misra A, Mara NA, Germann TC, Baldwin JK, Shimada T, Luo SN, Philos. Mag. 91 (2011) 4172.

    Article  Google Scholar 

  12. I.J. Beyerlein, J. Wang, and R.F. Zhang: Acta Mater., 2013, DOI:10.1016/j.actamat.2013.08.061.

  13. Demkowicz MJ, Hoagland RG, Hirth JP, Phys. Rev. Lett. 100 (2008) 136102.

    Article  Google Scholar 

  14. Demkowicz MJ, Bhattacharyya D, Usov I, Wang YQ, Nastasi M, Misra A. Appl. Phys. Lett. 97 (2010) 161903.

    Article  Google Scholar 

  15. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, A. Misra: Appl. Phys. Lett., 2010, vol. 97.

  16. Zhang RF, Germann TC, Liu XY, Wang J, Beyerlein IJ, Scripta Mater. 68 (2013) 114.

    Article  Google Scholar 

  17. [17] Tsuei CC. J. Appl. Phys. 45 (1974) 1385.

    Article  Google Scholar 

  18. Spitzig WA, Pelton AR, Laabs FC. Acta Metall. 35 (1987) 2427.

    Article  Google Scholar 

  19. Raabe D, Heringhaus F, Hangen U, Gottstein G., Zeit. f. Metallk. 86 (1995) 405.

    Google Scholar 

  20. Trybus CL, Spitzig WA. Acta Metall. 37 (1989) 1971.

    Article  Google Scholar 

  21. Spitzig WA, Reed LK. J Mater. Sci. Lett. 10 (1991) 371.

    Article  Google Scholar 

  22. [22] Raabe D, Ball J, Gottstein G. Scr. Metall. Mater. 27 (1992) 211.

    Article  Google Scholar 

  23. Funkenbusch PD, Courtney TH. Acta Metall. 33 (1985) 913.

    Article  Google Scholar 

  24. Raabe D, Hangen U. Mater. Lett. 22 (1995) 155.

    Article  Google Scholar 

  25. Raabe D. Mater. Sci. Eng. A 197 (1995) 31.

    Article  Google Scholar 

  26. Dupouy F, Snoeck E, Casanove MJ, Roucau C, Peyrade JP, Askenazy S, Scripta Mater. 34 (1996) 1067.

    Article  Google Scholar 

  27. Snoeck E, Lecouturier F, Thilly L, Casanove MJ, Rakoto H, Coffe G, Askenazy S, Peyrade JP, Roucau C, Pantsyrny V, Shikov A, Nikulin A, Scripta Mater. 38 (1998) 1643.

    Article  Google Scholar 

  28. Sauvage X, Thilly L, Lecouturier F, Guillet A, Blavette D, Nanostructured Mater. 11 (1999) 1031.

    Article  Google Scholar 

  29. Thilly L, Renault PO, Vidal V, Lecouturier F, Van Petegem S, Stuhr U, Van Swygenhoven H, App. Phys. Lett. 88 (2006) 191906.

    Article  Google Scholar 

  30. Dubois JB, Thilly L, Renault PO, Lecouturier F Adv. Eng. Mater. 14 (2012) 998.

    Article  Google Scholar 

  31. Lim SCV, Rollett AD, Mater. Sci. Eng. A 520 (2009) 189.

    Article  Google Scholar 

  32. Kang K, Wang J, Beyerlein IJ, J. Appl. Phys. 111 (2012) 053531.

    Article  Google Scholar 

  33. Han WZ, Carpenter JS, Wang J, Beyerlein IJ, Mara NA, App. Phys. Lett. 100 (2012) 011911.

    Article  Google Scholar 

  34. Carpenter JS, Vogel SC, LeDonne JE, Hammon DL, Beyerlein IJ, Mara NA, Acta Mater. 60 (2012) 1576.

    Article  Google Scholar 

  35. W.Z. Han, M.J. Demkowicz, N.A. Mara, E. Fu, S. Sinha, A.D. Rollett, Y. Wang, J.S. Carpenter, I.J. Beyerlein, and A. Misra: Adv. Mater., 2013, DOI:10.1002/adma.201303400.

  36. Carpenter JS, Liu X, Darbal A, Nuhfer, NT, McCabe RJ, Vogel SC, LeDonne JE, Rollett AD, Barmak K, Beyerlein IJ, Mara NA, Scripta Mater. 67 (2012) 336.

    Article  Google Scholar 

  37. Carpenter JS, Zheng S, Zhang R, Vogel SC, Beyerlein IJ, Mara NA, Philos. Mag. 93 (2013) 718.

    Article  Google Scholar 

  38. Zheng SJ, Beyerlein IJ, Wang J, Carpenter JS, Han WZ, Mara NA, Acta Mater. 60 (2012) 5858.

    Article  Google Scholar 

  39. Zheng SJ, Wang J, Kang KW, Carpenter JS, Beyerlein IJ, Mara NA, Nat. Comm. 4 (2013) 1696.

    Article  Google Scholar 

  40. Beyerlein IJ, Mara NA, Carpenter JS, Zheng SJ, Han WZ, Zhang RF, Kang KW, Germann TC, Nizolek T, Pollock TM, Wang J, JOM 64 (2012) 1192.

    Article  Google Scholar 

  41. Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA, Mater. Res. Lett. 1 (2013) 89.

    Article  Google Scholar 

  42. Carpenter JS, McCabe RJ, Wynn TA, Beyerlein IJ, Mara NA, J. Appl. Phys. 113 (2013) 094304.

    Article  Google Scholar 

  43. Beyerlein IJ, Mara NA, Bhattacharyya D, Alexander DJ, Necker CT, Int. J. Plast. 27 (2011) 121.

    Article  Google Scholar 

  44. Lu L, Chen X, Huang X, Lu K, Science 323 (2009) 607.

    Article  Google Scholar 

  45. Beyerlein IJ, Mara NA, Carpenter JS, Mook W, Nizolek T, McCabe RJ, Kang KW, Zheng SJ, Han WZ, J Mater. Res. 28 (2013) 1799.

    Article  Google Scholar 

  46. Wenk HR, Lutterotti L, Vogel SC, Nucl. Instrum. Methods Phys. Res. A, 2003, 515, p.575.

    Article  Google Scholar 

  47. Vogel SC, Hartig C, Lutterotti L, Von Dreele RB, Wenk HR, Williams DJ. Powder Diffr., 19 (2004) 5.

    Google Scholar 

  48. Lebensohn RA, Tome CN, Acta Metall. Mater. 41 (1993) 2611.

    Article  Google Scholar 

  49. UF Kocks, CN Tomé, H-R Wenk, Texture and Anisotropy, Cambridge University Press, (1998).

    Google Scholar 

  50. O Engler, V Randle, Introduction to Texture Analysis, Taylor & Francis, LLC, Boca Raton, FL, 2010.

    Google Scholar 

  51. K. Lűcke, O. Engler, Mater. Sci. Technol. 6 (1990) 1113.

    Article  Google Scholar 

  52. O. Engler, Scr. Mater. 44 (2001) 229.

    Article  Google Scholar 

  53. Hansen BL, Carpenter JS, Sintay SD, Bronkhorst CA, McCabe RJ, Mayeur JR, Mourad HM, Beyerlein IJ, Mara NA, Chen SR, Gray III, GT,, Int. J. Plast. 49 (2013) 71.

    Article  Google Scholar 

  54. Mayeur JR, Beyerlein IJ, Bronkhorst CA, Mourad HM, Hansen BL, Int. J. Plast. 48 (2013) 72.

    Article  Google Scholar 

  55. Mishra A, Richard V, Gregori F, Asaro RJ, Meyers MA, Mater. Sci. Eng. A 410-411 (2005) 290.

    Article  Google Scholar 

  56. Demkowicz MJ, Thilly L, Acta Mater. 59 (2011) 7744.

    Article  Google Scholar 

  57. Wang J, Kang K, Zhang RF, Zheng SJ, Beyerlein IJ, Mara NA, JOM 64 (2012) 1208.

    Article  Google Scholar 

  58. Beyerlein IJ, Tóth LS, Tomé CN, Suwas S, Philos. Mag. 87 (2007) 885.

    Article  Google Scholar 

  59. Mahesh S, Tomé CN, McCabe RJ, Kaschner GC, Beyerlein IJ, Misra A, Metall. Mater. Trans. A 35 (2004) 3763.

    Article  Google Scholar 

  60. Knezevic M, Beyerlein IJ, Nizolek T, Mara NA, Pollock TM, Materials Research Letters, 1 (2013) 133-140.

    Article  Google Scholar 

  61. Al-Fadhalah K, Tomé CN, Beaudoin AJ, Robertson IM, Hirth JP, Misra A, Philos. Mag. 85 (2005) 1419.

    Article  Google Scholar 

  62. Niezgoda S, Beyerlein IJ, Kanjarla A, Tomé CN, JOM 65 (2013) 419.

    Article  Google Scholar 

  63. Vogel SC, Alexander DJ, Beyerlein IJ, Bourke MAM, Brown DW, Clausen B, Tome CN, Von Dreele RB, Xu C, Langdon TG, Mater. Sci. For. 426-4 (2003) 2661.

    Article  Google Scholar 

  64. Wang ZQ, Beyerlein IJ, Int. J. Plast. 27 (2011) 1471.

    Article  Google Scholar 

  65. Hirsch J, Lucke K, Hatherly M, Acta Metall. 36 (1988) 2905.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Los Alamos National Laboratory Directed Research and Development (LDRD) Project DR20110029. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. Neutron diffraction results were collected on the high pressure preferred orientation (HIPPO) beam line at the Los Alamos Neutron Science Center with the help of Dr. S.C. Vogel. Electron microscopy was performed at the Los Alamos Electron Microscopy Laboratory. The authors would also like to acknowledge discussions with Dr. W.Z. Han.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Carpenter.

Additional information

Manuscript submitted June 19, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, J.S., McCabe, R.J., Zheng, S.J. et al. Processing Parameter Influence on Texture and Microstructural Evolution in Cu-Nb Multilayer Composites Fabricated via Accumulative Roll Bonding. Metall Mater Trans A 45, 2192–2208 (2014). https://doi.org/10.1007/s11661-013-2162-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2162-4

Keywords

Navigation