Skip to main content
Log in

Structure–Property–Functionality of Bimetal Interfaces

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfaces, such as grain boundaries, phase boundaries, and surfaces, are important in materials of any microstructural size scale, whether the microstructure is coarse-grained, ultrafine-grained, or nano-grained. In nanostructured materials, however, they dominate material response and as we have seen many times over, can lead to extraordinary and unusual properties that far exceed those of their coarse-grained counterparts. In this article, we focus on bimetal interfaces. To best elucidate interface structure–property–functionality relationships, we focus our studies on simple layered composites composed of an alternating stack of two metals with bimetal interfaces spaced less than 100 nm. We fabricate these nanocomposites by either a bottom–up method (physical vapor deposition) or a top–down method (accumulative roll bonding) to produce two distinct interface types. Atomic-scale differences in interface structure are shown to result in profound effects on bulk-scale properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Misra and R.G. Hoagland, J. Mater. Res. 20, 2046 (2005).

    Article  Google Scholar 

  2. B.M. Clemens, H. Kung, and S.A. Barnett, MRS Bull. 24, 20 (1999).

    Google Scholar 

  3. C.C. Aydiner, D.W. Brown, N.A. Mara, J. Almer, and A. Misra, Appl. Phys. Lett. 94, 031906 (2009).

    Article  Google Scholar 

  4. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  5. W.Z. Han, A. Misra, N.A. Mara, T.C. Germann, J.K. Baldwin, T. Shimada, and S.N. Luo, Philos. Mag. 91, 4172 (2011).

    Article  Google Scholar 

  6. X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, T. Hochbauer, A. Misra, and R.G. Hoagland, Nucl. Instrum. Methhods B 261, 1129 (2007).

    Article  Google Scholar 

  7. L. Thilly, M. Veron, O. Ludwig, F. Lecouturier, and J.P. Peyrade, Philos. Mag. A 82, 925 (2002).

    Article  Google Scholar 

  8. V.M. Segal, K.T. Hartwig, and R.E. Goforth, Mater. Sci. Eng. A 224, 107 (1997).

    Article  Google Scholar 

  9. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang, Scr. Mater. 63, 363 (2010).

    Article  Google Scholar 

  10. S.-B. Lee, J.E. LeDonne, S.C.V. Lim, I.J. Beyerlein, and A.D. Rollett, Acta Mater. 60, 1747 (2012).

    Article  Google Scholar 

  11. W.Z. Han, J.S. Carpenter, J. Wang, I.J. Beyerlein, and N.A. Mara, Appl. Phys. Lett. 100, 011911 (2012).

    Article  Google Scholar 

  12. S.J. Zheng, I.J. Beyerlein, J. Wang, J.S. Carpenter, W.Z. Han, and N.A. Mara, Acta Mater. (2012). doi:10.1016/j.actamat.2012.07.027.

  13. J.S. Carpenter, S.C. Vogel, J. LeDonne, D.L. Hammon, I.J. Beyerlein, and N.A. Mara, Acta Mater. 60, 1576 (2012).

    Article  Google Scholar 

  14. J.S. Carpenter, X. Liu, A. Darbal, N.T. Nuhfer, R.J. McCabe, S.C. Vogel, J.E. LeDonne, A.D. Rollett, K. Barmak, I.J. Beyerlein, and N.A. Mara, Scr. Mater. 67, 336 (2012).

    Article  Google Scholar 

  15. F. Dupouy, E. Snoeck, M.J. Casanove, C. Roucau, J.P. Peyrade, and S. Askenazy, Scr. Mater. 34, 1067 (1996).

    Article  Google Scholar 

  16. L. Thilly, M. Veron, O. Ludwig, and F. Lecouturier, Mater. Sci. Eng. A 309/310, 510 (2001).

    Article  Google Scholar 

  17. J.K. Chen, D. Farkas, and W.T. Reynolds Jr., Acta Mater. 45, 4415 (1997).

    Article  Google Scholar 

  18. J.K. Chen, G. Chen, and W.T. Reynolds Jr., Philos. Mag. A 78, 405 (1998).

    Article  Google Scholar 

  19. M.J. Demkowicz and L. Thilly, Acta Mater. 59, 7744 (2011).

    Article  Google Scholar 

  20. K. Kang, J. Wang, and I.J. Beyerlein, J. Appl. Phys. 111, 053531 (2012).

    Article  Google Scholar 

  21. M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth, Phys. Rev. Lett. 100, 2 (2008).

    Article  Google Scholar 

  22. J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara, JOM (2012). doi:10.1007/s11837-012-0429-7.

  23. J. Wang, R.G. Hoagland, X.Y. Liu, and A. Misra, Acta Mater. 59, 3164 (2011).

    Article  Google Scholar 

  24. R.F. Zhang, J. Wang, I.J. Beyerlein, A. Misra, and T.C. Germann, Acta Mater. 60, 2855 (2012).

    Article  Google Scholar 

  25. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Scr. Mater. 65, 1022 (2011).

    Article  Google Scholar 

  26. G.S. Xu and A.S. Argon, Philos. Mag. Lett. 80, 605 (2000).

    Article  Google Scholar 

  27. R.F. Zhang, J. Wang, X.Y. Liu, I.J. Beyerlein, and T.C. Germann (Paper presented at the Proceedings of the 17th APS Topical Conference on Shock Compression of Condensed Matter 1426, 1251, 2012).

  28. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  Google Scholar 

  29. E. Werner and W. Prantl, Acta Metall. Mater. 38, 533 (1990).

    Article  Google Scholar 

  30. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Scr. Mater. 23, 799 (1989).

    Google Scholar 

  31. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra, Acta Mater. 56, 5685 (2008).

    Article  Google Scholar 

  32. J. Wang and A. Misra, Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  Google Scholar 

  33. J. Wang, I.J. Beyerlein, N.A. Mara, and D. Bhattacharyya, Scr. Mater. 64, 1083 (2011).

    Article  Google Scholar 

  34. J. Wang, R.G. Hoagland, and A. Misra, Appl. Phys. Lett. 94, 131910 (2009).

    Article  Google Scholar 

  35. S. Mahesh, C.N. Tomé, R.J. McCabe, G.C. Kaschner, I.J. Beyerlein, and A. Misra, Metall. Mater. Trans. A 35A, 3763 (2004).

    Article  Google Scholar 

  36. D.J. Alexander and I.J. Beyerlein, Mater. Sci. Eng. A 410, 480 (2005).

    Article  Google Scholar 

  37. P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth, Acta Mater. 51, 6059 (2003).

    Article  Google Scholar 

  38. D. Raabe, F. Heringhaus, U. Hangen, and G. Gottstein, Z. Metallkd. 86, 405 (1995).

    Google Scholar 

  39. A.F. Voter, Los Alamos Unclassified Technical Report No. LA-UR 93-3901 (1993).

  40. G.J. Ackland and R. Thetford, Philos. Mag. A 56, 15 (1987).

    Article  Google Scholar 

  41. R.F. Zhang, J. Wang, I.J. Beyerlein, and T.C. Germann, Philos. Mag. Lett. 91, 731 (2011).

    Article  Google Scholar 

  42. F. Cao, I.J. Beyerlein, F.L. Addessio, B.H. Sencer, C.P. Trujillo, E.K. Cerreta, and G.T. Gray III, Acta Mater. 58, 549 (2010).

    Article  Google Scholar 

  43. I.J. Beyerlein, N.A. Mara, D. Bhattacharyya, C.T. Necker, and D.J. Alexander, Int. J. Plast. 27, 121 (2011).

    Article  Google Scholar 

  44. N.A. Mara, I.J. Beyerlein, J.S. Carpenter, and J. Wang, JOM (2012). doi:10.1007/s11837-012-0430-1.

  45. N. Li, N.A. Mara, J. Wang, P. Dickerson, J.Y. Huang, and A. Misra, Scr. Mater. 67, 479 (2012).

    Article  Google Scholar 

  46. A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, and H. Kung, Acta Mater. 52, 2387 (2004).

    Article  Google Scholar 

  47. S.C.V. Lim and A.D. Rollett, Mater. Sci. Eng. A 520, 189 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

Modeling work by I.J.B., R.F.Z. and K.K. was supported by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. Modeling and experimental work by N.A.M., J.S.C., S.J.Z., W.Z.H., and J.W. was supported by a Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) project DR20110029. T.N. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. Nanomechanical testing for this work was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. J. Beyerlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyerlein, I.J., Mara, N.A., Wang, J. et al. Structure–Property–Functionality of Bimetal Interfaces. JOM 64, 1192–1207 (2012). https://doi.org/10.1007/s11837-012-0431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0431-0

Keywords

Navigation