Skip to main content

Advertisement

Log in

Development of New Third-Generation Medium Manganese Advanced High-Strength Steels Elaborating Hot-Rolling and Intercritical Annealing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of hot rolling and austenite revert transformation (ART) on the microstructure development and mechanical properties for a series of newly developed manganese steels with small carbon and/or boron content was investigated in this study. The cast steels were hot rolled, ART annealed and subjected to tensile testings after each step. The carbon-bearing alloy revealed a significant combination of ultimate tensile strength (UTS) and elongation (El. pct) with 1.1 GPa and 42 pct values, respectively. The boron-bearing alloy exhibited a UTS of 760 MPa having 30 pct elongation. Moreover, the carbon and boron alloyed steel had a fully martensitic structure with a UTS of 1.4 GPa and a negligible elongation. X-ray diffraction, SEM and electron backscatter diffraction analyses were used to rationalize the mechanical behaviour of the developed alloys. The higher ductility values for the boron alloyed and carbon alloyed steels were attributed to the presence of the austenite phase in conjunction with α′- and ε-martensite and the transformation-induced martensite during the tensile loadings. The ART annealing at 290 °C, 450 °C and 510 °C increased the austenite fraction in the final microstructure of the boron alloyed and carbon alloyed steels but had an insignificant influence on the boron and carbon alloyed steels. It was concluded that the α′ → γ transformation occurring at higher ART annealing temperature is the dominant factor for the improved mechanical properties in the developed alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar Roy T, Bhattacharya B, Ghosh C, Ajmani SK (eds) (2018) Advanced High Strength Steel Processing and Applications. Springer, Singapore

    Google Scholar 

  2. Demeri MY (2013) Advanced High-Strength Steels: Science, Technology, and Applications. ASM International, Materials Park

    Google Scholar 

  3. Song H, Sohn SS, Kwak JH, Lee BJ, Lee S (2016) Metall Mater Trans A 47A:2674–85

    Article  Google Scholar 

  4. S. Ying, H. Dong, X. Zhang, W. Yu, F. Ma, and F. Zhao: in Proc. FISITA 2012 World Automot. Congr., Springer, Berlin, 2013, pp. 933–47.

  5. De Cooman BC (2017) Automotive Steels. Elsevier, Amsterdam, pp. 317–85

    Book  Google Scholar 

  6. 6 B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue: Acta Mater., 2018, vol. 148, pp. 249–62.

    Article  Google Scholar 

  7. 7 F. Huyan, J.-Y. Yan, L. Höglund, J. Ågren, and A. Borgenstam: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1053–60.

    Article  Google Scholar 

  8. 8 Y.-K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.

    Article  Google Scholar 

  9. 9 J. Zhao and Z. Jiang: Prog. Mater. Sci., 2018, vol. 94, pp. 174–242.

    Article  Google Scholar 

  10. 10 Z.P. Hu, Y.B. Xu, Y. Zou, R.D.K. Misra, D.T. Han, S.Q. Chen, and D.Y. Hou: Mater. Sci. Eng. A, 2018, vol. 720, pp. 1–10.

    Article  Google Scholar 

  11. 11 S.S.S.-J. Lee, S.S.S.-J. Lee, and B.C. De Cooman: Scr. Mater., 2011, vol. 64, pp. 649–52.

    Article  Google Scholar 

  12. B. Hu, H. Luo, F. Yang, and H. Dong: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1457–64.

    Article  Google Scholar 

  13. 13 H. Aydin, E. Essadiqi, I.-H. Jung, and S. Yue: Mater. Sci. Eng. A, 2013, vol. 564, pp. 501–8.

    Article  Google Scholar 

  14. 14 D. Raabe, D. Ponge, O. Dmitrieva, and B. Sander: Scr. Mater., 2009, vol. 60, pp. 1141–4.

    Article  Google Scholar 

  15. 15 S.G. Hashemi and B. Eghbali: Mater. Sci. Eng. A, 2017, vol. 705, pp. 32–41.

    Article  Google Scholar 

  16. 16 S. Qin, Y. Liu, Q. Hao, Y. Wang, N. Chen, X. Zuo, and Y. Rong: Mater. Sci. Eng. A, 2016, vol. 663, pp. 151–6.

    Article  Google Scholar 

  17. 17 C.-Y. Lee, J. Jeong, J. Han, S.-J. Lee, S. Lee, and Y.-K. Lee: Acta Mater., 2015, vol. 84, pp. 1–8.

    Article  Google Scholar 

  18. 18 K. Li, V.S.Y. Injeti, R.D.K. Misra, Z.H. Cai, and H. Ding: Mater. Sci. Eng. A, 2018, vol. 711, pp. 515–23.

    Article  Google Scholar 

  19. 19 D.Q. Zou, S.H. Li, J. He, B. Gu, and Y.F. Li: Mater. Sci. Eng. A, 2018, vol. 715, pp. 243–56.

    Article  Google Scholar 

  20. 20 Y. Li, W. Li, W. Liu, X. Wang, X. Hua, H. Liu, and X. Jin: Acta Mater., 2018, vol. 146, pp. 126–41.

    Article  Google Scholar 

  21. 21 G.A. Thomas and J.G. Speer: Mater. Sci. Technol., 2014, vol. 30, pp. 998–1007.

    Article  Google Scholar 

  22. 22 M. Askari-Paykani, H.R. Shahverdi, R. Miresmaeili, and H. Beladi: Mater. Sci. Eng. A, 2018, vol. 715, pp. 214–25.

    Article  Google Scholar 

  23. 23 M. Askari-Paykani, H.R. Shahverdi, and R. Miresmaeili: Mater. Sci. Eng. A, 2016, vol. 668, pp. 188–200.

    Article  Google Scholar 

  24. 24 M. Askari-Paykani, H.R. Shahverdi, and R. Miresmaeili: J. Mater. Process. Technol., 2016, vol. 238, pp. 383–94.

    Article  Google Scholar 

  25. 25 M. Askari-Paykani, H.R. Shahverdi, and R. Miresmaeili: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5423–37.

    Article  Google Scholar 

  26. 26 M. Askari-Paykani, H.R. Shahverdi, R. Miresmaeili, and H. Beladi: Mater. Charact., 2017, vol. 130, pp. 64–73.

    Article  Google Scholar 

  27. 27 K. Kumar, A. Pooleery, K. Madhusoodanan, R.N. Singh, J.K. Chakravartty, B.K. Dutta, and R.K. Sinha: Procedia Eng., 2014, vol. 86, pp. 899–909.

    Article  Google Scholar 

  28. De Cooman BC, Lee SJ, Shin S, Seo EJ, Speer JG (2017) Metall Mater Trans A 48A:39–45

    Article  Google Scholar 

  29. Field DM, Van Aken DC (2018) Metall Mater Trans A 49A:1152–66

    Article  Google Scholar 

  30. 30 F. Yang, H. Luo, E. Pu, S. Zhang, and H. Dong: Int. J. Plast., 2018, vol. 103, pp. 188–202.

    Article  Google Scholar 

  31. 31 Z.H. Cai, H. Ding, R.D.K. Misra, and S.Q. Qiguan: Mater. Sci. Eng. A, 2016, vol. 652, pp. 205–11.

    Article  Google Scholar 

  32. 32 Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding: Mater. Sci. Eng. A, 2016, vol. 673, pp. 63–72.

    Article  Google Scholar 

  33. 33 X. Ren, H. Fu, J. Xing, Y. Yang, and S. Tang: J. Mater. Res., 2017, vol. 32, pp. 3078–88.

    Article  Google Scholar 

  34. 34 Z. Lv, H. Fu, J. Xing, S. Ma, and Y. Hu: J. Alloys Compd., 2016, vol. 662, pp. 54–62.

    Article  Google Scholar 

  35. 35 L. León-Reina, M. García-Maté, G. Álvarez-Pinazo, I. Santacruz, O. Vallcorba, A.G. De la Torre, and M.A.G. Aranda: J. Appl. Crystallogr., 2016, vol. 49, pp. 722–35.

    Article  Google Scholar 

  36. 36 S. Morito, Y. Adachi, and T. Ohba: Mater. Trans., 2009, vol. 50, pp. 1919–23.

    Article  Google Scholar 

  37. 37 X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara: Acta Mater., 2018, vol. 144, pp. 601–12.

    Article  Google Scholar 

  38. 38 S. Morito, Y. Edamatsu, K. Ichinotani, T. Ohba, T. Hayashi, Y. Adachi, T. Furuhara, G. Miyamoto, and N. Takayama: J. Alloys Compd., 2013, vol. 577, pp. S587–92.

    Article  Google Scholar 

  39. Morito S, Tanaka H, Konishi R, Furuhara T, Maki T (2003) Acta Mater 51:1789–99

    Article  Google Scholar 

  40. Zhou T, Prasath Babu R, Odqvist J, Yu H, Hedström P (2018) Mater Des 143:141–49

    Article  Google Scholar 

  41. 41 S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, and H. Yaguchi: Mater. Trans., 2004, vol. 45, pp. 2239–44.

    Article  Google Scholar 

  42. 42 D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, and J.E. Wittig: Acta Mater., 2015, vol. 100, pp. 178–90.

    Article  Google Scholar 

  43. Y. Lu: Effect of Boron on Microstructure and Mechanical Properties of Low Carbon Microalloyed Steels. Masters’ Thesis, McGill University, 2007.

  44. 44 E. Farabi, P.D. Hodgson, G.S. Rohrer, and H. Beladi: Acta Mater., 2018, vol. 154, pp. 147–60.

    Article  Google Scholar 

  45. 45 P. Zhang, Y. Chen, W. Xiao, D. Ping, and X. Zhao: Prog. Nat. Sci. Mater. Int., 2016, vol. 26, pp. 169–72.

    Article  Google Scholar 

  46. 46 G. Krauss: Steels: Processing, Structure, and Performance, ASM International, Ohio, USA, 2005.

    Google Scholar 

  47. Xiang C, Liu Z, Chen X, Li Y, Hu K (2009) J Iron Steel Res Int 16:37–54

    Article  Google Scholar 

  48. 48 P.E. Busby, M.E. Warga, and C. Wells: JOM, 1953, vol. 5, pp. 1463–8.

    Article  Google Scholar 

  49. 49 S.N. Ghali, H.S. El-faramawy, and M.M. Eissa: J. Miner. Mater. Charact. Eng., 2012, vol. 11, pp. 995–9.

    Google Scholar 

  50. 50 C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, and Y.Q. Weng: Mater. Sci. Technol., 2014, vol. 30, pp. 791–9.

    Article  Google Scholar 

  51. Matlock DK, Speer JG, Haldar A, Suwas S, Bhattacharjee D (2009) In: Haldar A, Suwas S, Bhattacharjee D (eds) Microstructure and Texture in Steels. Springer, London, pp. 185–205

    Chapter  Google Scholar 

  52. 52 Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai: Mater. Sci. Eng. A, 2017, vol. 682, pp. 211–9.

    Article  Google Scholar 

  53. 53 X. Li, L. Chen, Y. Zhao, R. Devesh, K. Misra, and R.D.K. Misra: Mater. Des., 2018, vol. 142, pp. 190–202.

    Article  Google Scholar 

  54. 54 Q. Li, X. Huang, and W. Huang: Mater. Sci. Eng. A, 2016, vol. 662, pp. 129–35.

    Article  Google Scholar 

  55. 55 J. Lu, L. Hultman, E. Holmström, K.H. Antonsson, M. Grehk, W. Li, L. Vitos, and A. Golpayegani: Acta Mater., 2016, vol. 111, pp. 39–46.

    Article  Google Scholar 

  56. 56 S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Article  Google Scholar 

  57. 57 O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  Google Scholar 

  58. 58 M. Moallemi, A. Zarei-Hanzaki, and A. Mirzaei: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2335–40.

    Article  Google Scholar 

  59. Gupta A, Bhargava AK, Tewari R, Tiwari AN (2013) Metall Mater Trans A 44A:4248–56

    Article  Google Scholar 

  60. 60 H. Baker, ed.: ASM Handbook, Alloy Phase Diagrams, vol. 3, ASM International, Ohio, USA, 1992.

    Google Scholar 

  61. 61 W. Cao, C. Wang, C. Wang, J. Shi, M. Wang, H. Dong, and Y. Weng: Sci. China Technol. Sci., 2012, vol. 55, pp. 1814–22.

    Article  Google Scholar 

  62. De Cooman BC (2017) In: Rana R, Singh SB (eds) Automotive Steels. Woodhead Publishing, Cambridge, pp. 317–85

    Chapter  Google Scholar 

  63. 63 L. Bracke, L. Kestens, and J. Penning: Scr. Mater., 2007, vol. 57, pp. 385–8.

    Article  Google Scholar 

  64. 64 G.B. Olson and M. Cohen: J. Less Common Met., 1972, vol. 28, pp. 107–18.

    Article  Google Scholar 

  65. 65 N. Nakada, T. Tsuchiyama, S. Takaki, and N. Miyano: ISIJ Int., 2011, vol. 51, pp. 299–304.

    Article  Google Scholar 

  66. 66 P. Dastur, A. Zarei-Hanzaki, M.H. Pishbin, M. Moallemi, and H.R. Abedi: Mater. Sci. Eng. A, 2017, vol. 696, pp. 511–9.

    Article  Google Scholar 

  67. 67 S.S.F. de Dafé, F.L. Sicupira, F.C.S. Matos, N.S. Cruz, D.R. Moreira, and D.B. Santos: Mater. Res., 2013, vol. 16, pp. 1229–36.

    Article  Google Scholar 

  68. 68 F. Fazeli, N. Vanderesse, M. Jahazi, S. Yue, C. Scott, J. Chen, B. Sun, and P. Bocher: Scr. Mater., 2017, vol. 133, pp. 9–13.

    Article  Google Scholar 

  69. 69 L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang, and A. Shan: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2179–92.

    Article  Google Scholar 

  70. 70 K. Tomimura, S. Takaki, Y. Tokunaga, and A. Stainless: ISIJ Int., 1991, vol. 31, pp. 1431–7.

    Article  Google Scholar 

  71. 71 H. Lee, M.C. Jo, S.S. Sohn, A. Zargaran, J.H. Ryu, N.J. Kim, S. Lee, M. Chul, S. Su, A. Zargaran, J. Hyun, N.J. Kim, and S. Lee: Acta Mater., 2018, vol. 147, pp. 247–60.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Postdoctoral Grants of Tarbiat Modares University (96037203), Iranian National Elite Foundation, and funding from Nano Structured Advanced Materials Technologies Development Co. (NAMAD-1396) for an Advanced High-Strength Steel Innovation Project. Deakin University’s Advanced Characterization Facility is acknowledged for use of the EBSD instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Beladi or Hamid Reza Shahverdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 21, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, M., Askari-Paykani, M., Farabi, E. et al. Development of New Third-Generation Medium Manganese Advanced High-Strength Steels Elaborating Hot-Rolling and Intercritical Annealing. Metall Mater Trans A 50, 4261–4274 (2019). https://doi.org/10.1007/s11661-019-05352-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05352-4

Navigation