Skip to main content
Log in

Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  Google Scholar 

  2. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vol. 483, pp. 184–87.

    Article  Google Scholar 

  3. D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, F. Ren, and F. Shangguan: J. Alloys Compd., 2015, vol. 618, pp. 768–75.

    Article  Google Scholar 

  4. S. Martin, S. Wolf, U. Martin, L. Krüger, and D. Rafaja: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 49–58.

    Article  Google Scholar 

  5. Y.F. Shen, N. Jia, R.D.K. Misra, and L. Zuo: Acta Mater., 2016, vol. 103, pp. 229–42.

    Article  Google Scholar 

  6. S.S. Sohn, H. Song, J.G. Kim, J.H. Kwak, H.S. Kim, and S. Lee: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 706–17.

    Article  Google Scholar 

  7. H. Ding, H. Ding, D. Song, Z.Y. Tang, and P. Yang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 868–73.

    Article  Google Scholar 

  8. B.X. Huang, X.D. Wang, Y.H. Rong, L. Wang, and L. Jin: Mater. Sci. Eng. A, 2006, vol. 438, pp. 306–11.

    Article  Google Scholar 

  9. L.M. Fu, Z.M. Li, H.R. Wang, W. Wang, and A.D. Shan: Scr. Mater., 2012, vol. 67, pp. 297–300.

    Article  Google Scholar 

  10. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. A, 1949, vol. 62(1), pp. 49–62.

    Article  Google Scholar 

  11. S.-J. Kim, C. Gil Lee, T.-H. Lee, and C.-S. Oh: Scr. Mater., 2003, vol. 48, pp. 539–44.

    Article  Google Scholar 

  12. N. Tsuchida, Y. Tomota, K. Nagai, and K. Fukaura: Scr. Mater., 2006, vol. 54, pp. 57–60.

    Article  Google Scholar 

  13. G.G. Doncel, P. Adeva, M.C. Cristina, and J. Ibáñez: Acta Metall. Mater., 1995, vol. 43, pp. 4281–87.

    Article  Google Scholar 

  14. G. Tan, Y.N. Liu, P. Sittner, and M. Saunders: Scr. Mater., 2004, vol. 50, pp. 193–98.

    Article  Google Scholar 

  15. P. Sittner, Y.N. Liu, and V. Novák: J. Mech. Phys. Solids, 2005, vol. 53, pp. 1719–46.

    Article  Google Scholar 

  16. Y.N. Liu, Y. Liu, and J.V. Humbeeck: Scr. Mater., 1998, vol. 39, pp. 1047–55.

    Article  Google Scholar 

  17. M.R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60, pp. 1433–43.

    Article  Google Scholar 

  18. E. Emadoddin, A. Akbarzadeh, and G.H. Daneshi: Mater. Sci. Eng. A, 2007, vol. 447, pp. 174–79.

    Article  Google Scholar 

  19. E. Emadoddin, A. Akbarzadeh, and G.H. Daneshi: Mater. Charact., 2006, vol. 57, pp. 408–13.

    Article  Google Scholar 

  20. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  Google Scholar 

  21. T.S. Byun, N. Hashimoto, and K. Farrell: Acta Mater., 2004, vol. 52, pp. 3889–99.

    Article  Google Scholar 

  22. W.F. Zhang, Y.M. Chen, and J.H. Zhu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3117–20.

    Article  Google Scholar 

  23. W.S. Park, S.W. Yoo, M.H. Kim, and J.M. Lee: Mater. Des., 2010, vol. 31, pp. 3630–40.

    Article  Google Scholar 

  24. A.S. Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3076–90.

    Article  Google Scholar 

  25. Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.

    Article  Google Scholar 

  26. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387, pp. 158–62.

    Article  Google Scholar 

  27. B.X. Huang, X.D. Wang, L. Wang, and Y.H. Rong: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 717–24.

    Article  Google Scholar 

  28. H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, and P.J. Jacques: Scr. Mater., 2009, vol. 60, pp. 941–44.

    Article  Google Scholar 

  29. X. Tian and Y.S. Zhang: Mater. Sci. Eng. A, 2009, vol. 516, pp. 73–77.

    Article  Google Scholar 

  30. S. Curtze and V.T. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    Article  Google Scholar 

  31. M.N. Shiekhelsouk, V. Favier, K. Inal, S. Allain, O. Bouaziz, and M. Cherkaoui: Mater. Sci. Forum, 2006, vols. 524–525, pp. 833–38.

    Article  Google Scholar 

  32. V. Torabinejad, A.Z. Hanzaki, S. Moemeni, and A. Imandoust: Mater. Des., 2011, vol. 32, pp. 5015–21.

    Article  Google Scholar 

  33. A.E. Vidoz and L.M. Brown: Philos. Mag., 1962, vol. 7, pp. 1167–75.

    Article  Google Scholar 

  34. B. Bhattacharya, A.S. Sharma, S.S. Hazra, and R.K. Ray: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1190–1202.

    Article  Google Scholar 

  35. G.B. Olson and M. Azrin: Metall. Trans. A, 1978, vol. 9A, pp. 713–21.

    Article  Google Scholar 

  36. T. Gladman, I.D. McIvor, and F.B. Pickering: J. Iron Steel Inst., 1972, vol. 210, pp. 916–30.

    Google Scholar 

  37. O. Bouaziz, S. Allain, and C. Scott: Scr. Mater., 2008, vol. 58, pp. 484–87.

    Article  Google Scholar 

  38. O. Bouaziz, H. Zurob, B. Chehab, J.D. Embury, S. Allain, and M. Huang: Mater. Sci. Technol., 2011, vol. 27, pp. 707–09.

    Article  Google Scholar 

  39. T.Y. Hsu: Mater. Sci. Eng. A, 2006, vol. 438, pp. 64–68.

    Google Scholar 

  40. A. Perlade, O. Bouaziz, and Q. Furnemont: Mater. Sci. Eng. A, 2003, vol. 356, pp. 145–52.

    Article  Google Scholar 

  41. J. Wang and S. Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.

    Article  Google Scholar 

  42. J.H. Ryu, D.I. Kim, H.S. Kim, H. Bhadeshia, and D.W. Suh: Scr. Mater., 2010, vol. 63, pp. 297–99.

    Article  Google Scholar 

  43. T. Inoue and Z.G. Wang: Mater. Sci. Technol., 1985, vol. 1, pp. 845–50.

    Article  Google Scholar 

  44. T. Inoue: Mater. Sci. Forum, 2009, vol. 614, pp. 11–20.

    Article  Google Scholar 

  45. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  46. G.B. Olson and M. Cohen: Metall. Trans., 1975, vol. 6, pp. 791–95.

    Article  Google Scholar 

  47. H. Fujita and S. Ueda: Acta Metall., 1972, vol. 20, pp. 759–67.

    Article  Google Scholar 

  48. J.W. Brooks, M.H. Loretto, and RE Smallman: Acta Metall., 1979, vol. 27, pp. 1829–38.

    Article  Google Scholar 

  49. J.W. Brooks, M.H. Loretto, and R.E. Smallman: Acta Metall., 1979, vol. 27, pp. 1839–47.

    Article  Google Scholar 

  50. S. Kajiwara: Mater. Sci. Eng. A, 1999, vol. 273, pp. 67–88.

    Article  Google Scholar 

  51. P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 1725–37.

    Article  Google Scholar 

  52. I. Karaman, H. Sehitoglu, K. Gall, Y.I. Chumlyakov, and H.J. Maier: Acta Mater., 2000, vol. 48, pp. 1345–59.

    Article  Google Scholar 

  53. O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vol. 319, pp. 246–49.

    Article  Google Scholar 

  54. S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 641–44.

    Article  Google Scholar 

  55. J.P. Hirth: Metall. Trans., 1970, vol. 1, pp. 2367–74.

    Article  Google Scholar 

  56. Y.K. Lee and C. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    Article  Google Scholar 

  57. P.Y. Volosevich, V.P. Gridnew, and Y.N. Petrov: Fiz. Met. Metalloved., 1976, vol. 42, pp. 372–76.

    Google Scholar 

  58. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  Google Scholar 

  59. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the Jiangxi Provincial Science and Technology Department (Grant No. 20151BDH80082) and Major Science and Technology Project of Water Pollution Control from the Ministry of Environmental Protection of China (Grant No. 2014ZX07214-002) is gratefully appreciated. One of the authors (LF) acknowledges the financial support from the China Postdoctoral Science Foundation (Grant No. 2015M581608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Fu.

Additional information

Manuscript submitted October 4, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Shan, M., Zhang, D. et al. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel. Metall Mater Trans A 48, 2179–2192 (2017). https://doi.org/10.1007/s11661-017-3994-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-3994-0

Keywords

Navigation