Skip to main content
Log in

Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn (α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α′-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Mayyas, A. Qattawi, M. Omar, and D. Shan: Renewable Sustainable Energy Rev., 2012, vol. 16, pp. 1845–62.

    Article  Google Scholar 

  2. R. Kuziak, R. Kawalla, and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–17.

    Article  Google Scholar 

  3. S.W. Hwang, J.H. Ji, E.G. Lee, and K.-T. Park: Mater. Sci. Eng., 2011, vol. A528, pp. 5196–5203.

    Article  Google Scholar 

  4. C.-H. Seo, K.H. Kwon, K. Choi, K.-H. Kim, J.H. Kwak, S. Lee, and N.J. Kim: Scripta Mater., 2012, vol. 66, pp. 519–22.

    Article  Google Scholar 

  5. S.-J. Park, B. Hwang, K.H. Lee, T.-H. Lee, D.-W. Suh, and H.N. Han: Scripta Mater., 2013, vol. 68, pp. 365–69.

    Article  Google Scholar 

  6. D.-W. Suh, S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  Google Scholar 

  7. L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.

    Article  Google Scholar 

  8. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, and K. Lu: Acta Mater., 2013, vol. 51, pp. 1871–81.

    Article  Google Scholar 

  9. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng., 2008, vol. A483–A484, pp. 184–87.

  10. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.

    Article  Google Scholar 

  11. T. Sahraoui, M. Hadji, and M. Yahi: Mater. Sci. Eng., 2009, vol. A523, pp. 271–76.

    Article  Google Scholar 

  12. J.E. Jung, J. Park, J.-S. Kim, J.B. Jeon, S.K. Kim, and Y.W. Chang: Metall. Mater. Int., 2014, vol. 20, pp. 27–34.

    Article  Google Scholar 

  13. G. Frommeyer and U. Brüx: Steel Res. Int., 2006, vol. 77, pp. 627–33.

    Google Scholar 

  14. R. Rana, C. Liu, and R.K, Ray: Scripta Mater., 2013, vol. 68, pp. 354–59.

    Article  Google Scholar 

  15. S.S. Sohn, H. Song, B.-C. Suh, J.-H. Kwak, B.-J. Lee, N.J. Kim, and S. Lee: Acta Mater., 2015, vol. 96, pp. 301–10.

    Article  Google Scholar 

  16. H. Huang, D. Gan, and P.W. Kao: Scripta Metall. Mater., 1994, vol. 30, pp. 499–504.

    Article  Google Scholar 

  17. W.K. Choo, J.H. Kim, and J.C. Yoon: Acta Mater., 1997, vol. 45, pp. 4877–85.

    Article  Google Scholar 

  18. K. Sato, K. Tagawa, and Y. Inoue: Metall. Trans. A, 1990, vol. 21A, pp. 5–11.

    Article  Google Scholar 

  19. C.L. Lin, C.G. Chao, H.Y. Bor, and T.F. Liu: Mater. Trans., 2010, vol. 51, pp. 1084–88.

    Article  Google Scholar 

  20. K.T. Luo, P.-W. Kao, and D. Gan: Mater. Sci. Eng., 1992, vol. A151, pp. L15–L18.

    Article  Google Scholar 

  21. S.Y. Han, S.Y. Shin, H.-J. Lee, B.-J. Lee, S. Lee, N.J. Kim, and J.-H. Kwak: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 843–53.

    Article  Google Scholar 

  22. G. Frommeyer, E.J. Drewes, and B. Engl: Rev. Metall. Cah. Inf. Technol., 2000, vol. 97, pp. 1245–53.

    Google Scholar 

  23. L. Falat, A. Schneider, G. Sauthoff, and G. Frommeyer: Intermetallics, 2005, vol. 13, pp. 1256–62.

    Article  Google Scholar 

  24. Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma, and K. Ishida: ISIJ Int., 2010, vol. 50, pp. 893–99.

    Article  Google Scholar 

  25. K. Choi, C.-H. Seo, H. Lee, S.K. Kim, J.H. Kwak, K.G. Chin, K.-T. Park, and N.J. Kim: Scripta Mater., 2010, vol. 63, pp. 1028–31.

    Article  Google Scholar 

  26. K.-T. Park, K.G. Jin, S.H. Han, S.W. Hwang, K. Choi, and C.S. Lee: Mater. Sci. Eng., 2010, vol. A527, pp. 3651–61.

    Article  Google Scholar 

  27. B. Kim, T.T.T. Trang, and N.J. Kim: Met. Mater. Int., 2014, vol. 20, pp. 35–39.

    Article  Google Scholar 

  28. H. Kim, D.-W. Suh, and N.J. Kim: Sci. Technol. Adv. Mater., 2013, vol. 14, pp. 1–11.

    Article  Google Scholar 

  29. S.S. Sohn, B.-J. Lee, S. Lee, and J.-H. Kwak: Met. Mater. Int., 2015, vol. 21, pp. 43–53.

    Article  Google Scholar 

  30. K.-G Chin, C.-Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.-H. Kim, and N.J. Kim: Mater. Sci. Eng., 2011, vol. A528, pp. 2922–28.

    Article  Google Scholar 

  31. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  Google Scholar 

  32. J.H. Ryu, D.-I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, and D.-W. Suh: Scripta Mater., 2010, vol. 63, pp. 297–99.

    Article  Google Scholar 

  33. A. Zargaran, H.S. Kim, J.H. Kwak, and N.J. Kim: Met. Mater. Int., 2015, vol. 21, pp. 79–84.

    Article  Google Scholar 

  34. S.S. Sohn, B.-J. Lee, J.-H. Kwak, and S. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3844–56.

    Article  Google Scholar 

  35. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.K. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3281–89.

    Article  Google Scholar 

  36. J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.

    Article  Google Scholar 

  37. B.D. Cullity: in Elements of X-Ray Diffraction, 2nd ed., M. Cohen, ed., Addison-Wesley, Reading, MA, 1978, pp. 517–18.

  38. B. Sundman, B. Jansson, and J.-O. Andersson: Calphad, 1985, vol. 9, pp. 153–90.

    Article  Google Scholar 

  39. “TCFE2000: The Thermo-Calc Steels Database, upgraded by B.-J. Lee, B. Sundman at KTH,” KTH, Stockholm, 1999.

  40. K.-G. Chin, H.-J. Lee, J.-H. Kwak, J.-Y. Kang, and B.-J. Lee: J. Alloys Compd., 2010, vol. 505, pp. 217–23.

    Article  Google Scholar 

  41. A. Piñol-Juez, A. Iza-mendia, and I. Gutiérrez: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1671–77.

    Article  Google Scholar 

  42. N. Suutala, T. Takalo, and T. Moisio: Metall. Trans. A, 1980, vol. 11A, pp. 717–25.

    Article  Google Scholar 

  43. S. Atamert and J.E. King: Acta Metall. Mater., 1991, vol. 39, pp. 273–85.

    Article  Google Scholar 

  44. C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.

    Article  Google Scholar 

  45. F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.

    Article  Google Scholar 

  46. D. Yan, C.C. Tasan, and D. Raabe: Acta Mater., 2015, vol. 96, pp. 399–409.

    Article  Google Scholar 

  47. S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama: Mater. Trans., 2004, vol. 45, pp. 2245–51.

    Article  Google Scholar 

  48. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421–24.

    Article  Google Scholar 

  49. M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.

    Article  Google Scholar 

  50. G. Krauss: Steels: Processing, Structure, and Performance, 2nd ed., ASM INTERNATIONAL, Ohio, 2015, p. 234.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Knowledge Economy of Korea under Grant No. 10052826 and the BK21 Plus Center for Creative Industrial Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Su Sohn.

Additional information

Manuscript submitted October 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Sohn, S.S., Kwak, JH. et al. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels. Metall Mater Trans A 47, 2674–2685 (2016). https://doi.org/10.1007/s11661-016-3433-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3433-7

Keywords

Navigation