Skip to main content

Advertisement

Log in

Potential Medicinal Value of Rhein for Diabetic Kidney Disease

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Diabetic kidney disease (DKD) is the primary cause of mortality among diabetic patients. With the increasing prevalence of diabetes, it has become a major concern around the world. The therapeutic effect of clinical use of drugs is far from expected, and therapy choices to slow the progression of DKD remain restricted. Therefore, research on new drugs and treatments for DKD has been a hot topic in the medical field. It has been found that rhein has the potential to target the pathogenesis of DKD and has a wide range of pharmacological effects on DKD, such as anti-nephritis, decreasing blood glucose, controlling blood lipids and renal protection. In recent years, the medical value of rhein in the treatment of diabetes, DKD and renal disease has gradually attracted worldwide attention, especially its potential in the treatment of DKD. Currently, DKD can only be treated with medications from a single symptom and are accompanied by adverse effects, while rhein improves DKD with a multi-pathway and multi-target approach. Therefore, this paper reviews the therapeutic effects of rhein on DKD, and proposes solutions to the limitations of rhein itself, in order to provide valuable references for the clinical application of rhein in DKD and the development of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levey AS, Eckardt KU, Dorman NM, et al. Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 2020;97:1117–1129.

    Article  PubMed  Google Scholar 

  2. Conway BN, May ME. Mortality experience of a low-income population with young-onset diabetes. Diabetes Care 2012;35:542–548.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gu HF. Genetic and epigenetic studies in diabetic kidney disease. Front Genet 2019;10:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ram C, Jha AK, Ghosh A, et al. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy: preclinical evidences with therapeutic approaches. Eur J Pharmacol 2020;885:173503.

    Article  CAS  PubMed  Google Scholar 

  5. Brunskill NJ. C-peptide and diabetic kidney disease. J Intern Med 2017;281:41–51.

    Article  CAS  PubMed  Google Scholar 

  6. Ruiz-Ortega M, Rodrigues-Diez RR, Lavoz C, et al. Special issue “Diabetic nephropathy: diagnosis, prevention and treatment”. J Clin Med 2020;9:813.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pan XW, Lin XL, Huang X, et al. The burden of diabetes-related chronic kidney disease in china from 1990 to 2019. Front Endocrinol 2022;13:892860.

    Article  Google Scholar 

  8. Pacilli A, Viazzi F, Fioretto P, et al. Epidemiology of diabetic kidney disease in adult patients with type 1 diabetes in Italy: the AMD-Annals initiative. Diabetes Metab Res Rev 2017;33:e2873.

    Article  Google Scholar 

  9. Song J, Ni J, Yin X. The genetic side of diabetic kidney disease: a review. Int Urol Nephrol 2022. Epub ahead of print

  10. Vistisen D, Andersen GS, Hulman A, et al. A validated prediction model for end-stage kidney disease in type 1 diabetes. Diabetes Care 2021;44:901–907.

    Article  PubMed  Google Scholar 

  11. Lacava V, Pellicanò V, Ferrajolo C, et al. Novel avenues for treating diabetic nephropathy: new investigational drugs. Expert Opin Inv Drug 2017;26:445–462.

    Article  CAS  Google Scholar 

  12. Alehaideb Z, Chin KC, Yao MC, et al. Predicting the content of anthraquinone bioactive in Rhei rhizome (Rheum officinale Baill.) with the concentration addition model. Saudi Pharm J 2019;27:25–32.

    Article  PubMed  Google Scholar 

  13. Mohammed A, Ibrahim MA, Tajuddeen N, et al. Antidiabetic potential of anthraquinones: a review. Phytother Res 2020;34:486–504.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Chen Z, Zhang Y, et al. Rhein protects pancreatic β-cells from dynamin-related protein-1-mediated mitochondrial fission and cell apoptosis under hyperglycemia. Diabetes 2013;62:3927–3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu C, Qi D, Sun J, et al. Rhein prevents endotoxin-induced acute kidney injury by inhibiting NF-κ B activities. Sci Rep 2015;5:11822.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang MZ, Wang S, Yang S, et al. Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS-/- db/db mice. Am J Physiol Renal Physiol 2012;302:F433–F438.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng Y, Zhang H, Qu L, et al. Identification of rhein as the metabolite responsible for toxicity of rhubarb anthraquinones. Food Chem 2020;331:127363.

    Article  CAS  PubMed  Google Scholar 

  18. Gómez-Gaete C, Retamal M, Chávez C, et al. Development, characterization and in vitro evaluation of biodegradable rhein-loaded microparticles for treatment of osteoarthritis. Eur J Pharm Sci 2017;96:390–397.

    Article  PubMed  Google Scholar 

  19. Nair AR, Lakshman YD, Anand VSK, et al. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS Pharm Sci Tech 2020;21:309.

    Article  CAS  Google Scholar 

  20. Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol 2018;120:1406–1419.

    Article  CAS  PubMed  Google Scholar 

  21. Zuckerman JE, Davis ME. Targeting therapeutics to the glomerulus with nanoparticles. Adv Chronic Kidney D 2013;20:500–507.

    Article  Google Scholar 

  22. Guo S, Guo X, Zhang H, et al. The effect of diacerein on type 2 diabetic mellitus: a systematic review and meta-analysis of randomized controlled trials with trial sequential analysis. J Diabetes Res 2020;2020:2593792.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu C, Cong XD, Dai D, et al. Argirein alleviates diabetic nephropathy through attenuating NADPH oxidase, Cx43, and PERK in renal tissue. Naunyn Schmiedebergs Arch Pharmacol 2011;383:309–319.

    Article  CAS  PubMed  Google Scholar 

  24. Hu G, Zhan YZ, Luo GL, et al. Rhein lysinate protects pancreas in type 2 diabetic mice. J Third Milit Med Univ (Chin) 2014;36:461–465.

    CAS  Google Scholar 

  25. Said SM, Nasr SH. Silent diabetic nephropathy. Kidney Int 2016;90:24–26.

    Article  PubMed  Google Scholar 

  26. Zhao JX, Wang SD, Li J, et al. Studies about specification of syndrome differentiation on different stages and efficacy evaluation proposal for diabetic kidney disease. World J Tradit Chin Med (Chin) 2017;12:1–4.

    Google Scholar 

  27. Huang W, Chen YY, Li ZQ, et al. Recent advances in the emerging therapeutic strategies for diabetic kidney diseases. Int J Mole Sci 2022;23:10882.

    Article  CAS  Google Scholar 

  28. Alvarez G, Chrusch C, Hulme T, et al. Renal replacement therapy: a practical update. Can J Anaesth 2019;66:593–604.

    Article  PubMed  Google Scholar 

  29. Backholer K, Peeters A, Herman WH, et al. Diabetes prevention and treatment strategies. Diabetes Care 2013;36:2714–2719.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kotsis V, Martinez F, Trakatelli C, et al. Impact of obesity in kidney diseases. Nutrients 2021;13:4482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang S, Quan DV, Sung JH, et al. Cigarette smoke inhalation aggravates diabetic kidney injury in rats. Toxicol Res 2019;8:964–971.

    Article  CAS  Google Scholar 

  32. Monno I, Ogura Y, Xu J, et al. Exercise ameliorates diabetic kidney disease in type 2 diabetic fatty rats. Antioxidants 2021;10:1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen Y, Wang X, Jia Y, et al. Effect of a sodium restriction diet on albuminuria and blood pressure in diabetic kidney disease patients: a meta-analysis. Int Urol Nephrol 2022;54:1249–1260.

    Article  CAS  PubMed  Google Scholar 

  34. de Boer IH. Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 2014;37:24–30.

    Article  CAS  PubMed  Google Scholar 

  35. Noguchi H, Kitada H, Kaku K, et al. Outcome of renal transplantation in patients with type 2 diabetic nephropathy: a single-center experience. Transplant Proc 2015;47:608–611.

    Article  CAS  PubMed  Google Scholar 

  36. Anders HJ, Huber TB, Isermann B, et al. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol 2018;14:361–377.

    Article  CAS  PubMed  Google Scholar 

  37. Mima A. A narrative review of diabetic kidney disease: previous and current evidence-based therapeutic approaches. Adv Ther 2022;39:3488–3500.

    Article  PubMed  Google Scholar 

  38. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017;337:644–657.

    Article  Google Scholar 

  39. Su K, Yi B, Yao B, et al. Liraglutide attenuates renal tubular ectopic lipid deposition in rats with diabetic nephropathy by inhibiting lipid synthesis and promoting lipolysis. Pharmacol Res 2020;156:104778.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenstock J, Perkovic V, Johansen OE, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk. JAMA 2019;321:69.

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Xiang H, Lu Y, et al. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021;141:111918.

    Article  CAS  PubMed  Google Scholar 

  42. Moratal C, Laurain A, Naïmi M, et al. Regulation of monocytes/macrophages by the renin-angiotensin system in diabetic nephropathy: state of the art and results of a pilot study. Int J Mol Sci 2021;22:6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaku K, Chin R, Naito Y, et al. Safety and effectiveness of empagliflozin in Japanese patients with type 2 diabetes: interim analysis from a post-marketing surveillance study. Expert Opin Drug Saf 2022;19:211–221.

    Article  Google Scholar 

  44. Walley T, Winstanley P, Roberts D, et al. Adverse effects of captopril in hospital outpatients with hypertension. Postgrad Med J 1990;66:106–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ayhanci A, Cengiz M, Mehtap Kutlu H, et al. Protective effects of ellagic acid in d-galactosamine-induced kidney damage in rats. Cytotechnology 2016;68:1763–1770.

    Article  CAS  PubMed  Google Scholar 

  46. Brenneman J, Hill J, Pullen S. Emerging therapeutics for the treatment of diabetic nephropathy. Bioorg Med Chem Lett 2016;26:4394–4402.

    Article  CAS  PubMed  Google Scholar 

  47. Chen CM, Zhang MM, Hu LM. Effect of rhein on the expression of PPAR γ and TGF-β 1 in renal cortex of obese diabetic rats. J Chin Med Mater (Chin) 2015;38:810–812.

    CAS  Google Scholar 

  48. Lin W, Li H, Yang Q, et al. Administration of mesenchymal stem cells in diabetic kidney disease: a systematic review and meta-analysis. Stem Cell Res Ther 2021;12:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Persson F, Frimodt-Møller M, Rossing P. Inflammation leads the way on the ROADMAP to diabetic kidney disease. Kidney Int Rep 2019;4:1362–1365.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Navarro-González JF, Mora-Fernández C, de Fuentes MM, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011;7:327–340.

    Article  PubMed  Google Scholar 

  51. Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, et al. Inflammatory targets in diabetic nephropathy. J Clin Med 2020;9:458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol 2020;16:206–222.

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Yao B, Wang Y, et al. Macrophage cyclooxygenase-2 protects against development of diabetic nephropathy. Diabetes 2017;66:494–504.

    Article  CAS  PubMed  Google Scholar 

  54. Torres Á, Muñoz K, Nahuelpán Y, et al. Intraglomerular monocyte/macrophage infiltration and macrophage-myofibroblast transition during diabetic nephropathy is regulated by the A2B adenosine receptor. Cells 2020;9:1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bi F, Chen F, Li Y, et al. Klotho preservation by rhein promotes toll-like receptor 4 proteolysis and attenuates lipopolysaccharide-induced acute kidney injury. J Mol Med (Berl) 2018;96:915–927.

    Article  CAS  PubMed  Google Scholar 

  56. Panah F, Ghorbanihaghjo A, Argani H, et al. Ischemic acute kidney injury and klotho in renal transplantation. Clin Biochem 2018;55:3–8.

    Article  CAS  PubMed  Google Scholar 

  57. Maekawa Y, Ishikawa K, Yasuda O, et al. Klotho suppresses TNF-α-induced expression of adhesion molecules in the endothelium and attenuates NF-κ B activation. Endocrine 2009;35:341–346.

    Article  CAS  PubMed  Google Scholar 

  58. Lim SW, Shin YJ, Luo K, et al. Effect of Klotho on autophagy clearance in tacrolimus-induced renal injury. FASEB J 2018;33:2694–2706.

    Article  PubMed  Google Scholar 

  59. Smith ER. Untangling the thread of life spun by α Klotho. J Mol Med (Berl) 2018;96:857–859.

    Article  PubMed  Google Scholar 

  60. Ge H, Tang H, Liang Y, et al. Rhein attenuates inflammation through inhibition of NF-κ B and NALP3 inflammasome in vivo and in vitro. Drug Des Devel Ther 2017;11:1663–1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao Y, Chen X, Fang L, et al. Rhein exerts pro- and anti-inflammatory actions by targeting IKK β inhibition in LPS-activated macrophages. Free Radical Bio Med 2014;72:104–112.

    Article  CAS  Google Scholar 

  62. Ye L, Chen T, Cao J, et al. Short hairpin RNA attenuates liver fibrosis by regulating the PPAR gamma and NF-κ B pathways in HBV induced liver fibrosis in mice. Int J Oncol 2020;57:1116–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bermejo A, Collado A, Barrachina I, et al. Polycerasoidol, a natural prenylated benzopyran with a dual PPAR α/PPAR γ agonist activity and anti-inflammatory effect. J Nat Prod 2019;82:1802–1812.

    Article  CAS  PubMed  Google Scholar 

  64. Antonisamy P, Agastian P, Kang C, et al. Anti-inflammatory activity of rhein isolated from the flowers of Cassia fistula L. and possible underlying mechanisms. Saudi J Biol Sci 2019;26:96–104.

    Article  CAS  PubMed  Google Scholar 

  65. Wen Q, Miao J, Lau N, et al. Rhein attenuates lipopolysaccharide-primed inflammation through NF-κ B inhibition in RAW264.7 cells: targeting the PPAR-γ signal pathway. Can J Physiol Pharm 2020;98:357–365.

    Article  CAS  Google Scholar 

  66. Hu J, Yang Z, Wu H, et al. Rhein attenuates renal inflammatory injury of uric acid nephropathy via lincRNA-Cox2/miR-150-5p/STAT1 axis. Int Immunopharmacol 2020;85:106620.

    Article  CAS  PubMed  Google Scholar 

  67. Czajka A, Malik AN. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: implications for diabetic nephropathy. Redox Biol 2016;10:100–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang J, Yue X, Meng C, et al. Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol 2020;11:536213.

    Article  Google Scholar 

  69. Mastrototaro L, Roden M. Insulin resistance and insulin sensitizing agents. Metabolism 2021;125:154892.

    Article  CAS  PubMed  Google Scholar 

  70. Wang J, Yue X, Meng C, et al. Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol (Lausanne) 2020;11:536213.

    Article  PubMed  Google Scholar 

  71. Du H, Shao J, Gu P, et al. Improvement of glucose tolerance by rhein with restored early-phase insulin secretion in db/db mice. J Endocrinol Invest 2012;35:607–612.

    Article  CAS  PubMed  Google Scholar 

  72. Mandrup-Poulsen T. Interleukin-1 antagonists for diabetes. Expert Opin Inv Drug 2013;22:965–979.

    Article  CAS  Google Scholar 

  73. Matoba K, Takeda Y, Nagai Y, et al. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci 2019;20:3393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gong W, Li LS, Sun H, et al. Rhein down regulates renal expression of both TGF-β and TGF-β receptor in diabetic rats. Nephrol Daily Transplant 2006;15:101–111.

    CAS  Google Scholar 

  75. Duan SF, Hu J. Effects of the rhein on the expression of PPAR γ in diabetic rats’ mesangial cells. J Pract Med (Chin) 2018;34:1636–1639.

    Google Scholar 

  76. Ma Y, Shi M, Wang Y, et al. PPAR γ and its agonists in chronic kidney disease. Int J Nephrol 2020;2020:2917474.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Choi SB, Ko BS, Park SK, et al. Insulin sensitizing and alpha-glucoamylase inhibitory action of sennosides, rheins and rhaponticin in Rhei Rhizoma. Life Sci 2006;78:934–942.

    Article  CAS  PubMed  Google Scholar 

  78. Zheng J, Zhu J, Li L, et al. Rhein reverses the diabetic phenotype of mesangial cells over-expressing the glucose transporter (GLUT1) by inhibiting the hexosamine pathway. Brit J Pharmacol 2008;153:1456–1464.

    Article  CAS  Google Scholar 

  79. Martin-Moreno PL, Shin H, Chandraker A. Obesity and post-transplant diabetes mellitus in kidney transplantation. J Clin Med 2021;10:2497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sheng X, Zhu X, Zhang Y, et al. Rhein protects against obesity and related metabolic disorders through liver X receptor-mediated uncoupling protein 1 upregulation in brown adipose tissue. Int J Biol Sci 2012;8:1375–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, Fan S, Hu N, et al. Rhein reduces fat weight in db/db mouse and prevents diet-induced obesity in C57BL/6 mouse through the inhibition of PPAR γ signaling. PPAR Res 2012;2012:374936.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gao Q, Qin WS, Jia ZH, et al. Rhein improves renal lesion and ameliorates dyslipidemia in db/db mice with diabetic nephropathy. Planta Med 2010;76:27–33.

    Article  CAS  PubMed  Google Scholar 

  83. Li JJ, Liang YY, Dong SF, et al. Effect of rhein on 3T3-L1 preadipocyte differentiation and related gene expression. Inf Tradit Chin Med (Chin) 2017;34:1–5.

    Google Scholar 

  84. You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol 2019;70:237–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. On S, Kim HY, Kim HS, et al. Involvement of G-protein-coupled receptor 40 in the inhibitory effects of docosahexaenoic acid on SREBP1-mediated lipogenic enzyme expression in primary hepatocytes. Int J Mol Sci 2019;20:2625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang A, Song A, Zhang C. Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 2022;35:1571–1584.

    Article  CAS  PubMed  Google Scholar 

  87. Lay AC, Coward RJM. The evolving importance of insulin signaling in podocyte health and disease. Front Endocrinol 2018;9:693.

    Article  Google Scholar 

  88. Dlugos CP, Picciotto C, Lepa C, et al. Nephrin signaling results in integrinβ 1 activation. J Am Soc Nephrol 2019;30:1006–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen J, Liu L, Zhong L. Rhein on diabetic nephropathy rat podocytes nephrin expression. Chongqing Med J (Chin) 2013;42:3732–3734.

    CAS  Google Scholar 

  90. Wu YY. Protective effect of rhein on kidney in db/db mice and podocyte through its influence on wnt/β-catenin pathway [dissertation]. Nanjing: Nanjing Medical University;2015.

    Google Scholar 

  91. Duan S, Wu Y, Zhao C, et al. The wnt/β -catenin signaling pathway participates in rhein ameliorating kidney injury in DN mice. Mol Cell Biochem 2016;411:73–82.

    Article  CAS  PubMed  Google Scholar 

  92. Duan S, Zhang S, Zhang C, et al. Therapeutic effect of rhein on high glucose-induced podocyte injury via GSK3 β-wnt/β-Catenin-PPAR γ signaling pathway. Int J Clin Exp Pathol 2017;10:6279–6289.

    Google Scholar 

  93. Zhou T, Luo M, Cai W, et al. Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. Ebiomedicine 2018;31:217–225.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dihazi H, Dihazi GH, Bibi1 A, et al. Secretion of ERP57 is important for extracellular matrix accumulation and progression of renal fibrosis, and is an early sign of disease onset. J Cell Sci 2013;126:3649–3662.

    CAS  PubMed  Google Scholar 

  95. Yang JY, Peng LL, Ning JP. Effects of rhein towards ILK/snail signal pathway during epithelial-mesenchymal transition process of renal tubular epithelial cells in diabetic nephropathy rats. J Chin Phys (Chin) 2020;22:875–885.

    Google Scholar 

  96. Meng ZQ, Yan YX, Tang ZH, et al. Anti-hyperuricemic and nephroprotective effects of rhein in hyperuricemic mice. Planta Med 2015;81:279–285.

    Article  CAS  PubMed  Google Scholar 

  97. Wu XX, Liu MY, Wei G, et al. Renal protection of rhein against 5/6 nephrectomied-induced chronic kidney disease: role of SIRT3-FOXO3alpha signalling pathway. J Pharm Pharmacol 2020;72:699–708.

    Article  CAS  PubMed  Google Scholar 

  98. Pérez-Areales FJ, Betari N, Viayna A, et al. Design, synthesis and multitarget biological profiling of second-generation anti-Alzheimer rhein-huprine hybrids. Future Med Chem 2017;9:965–981.

    Article  PubMed  Google Scholar 

  99. Viayna E, Sola I, Bartolini M, et al. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J Med Chem 2014;57:2549–2567.

    Article  CAS  PubMed  Google Scholar 

  100. Xiang H. Study on the structure and pharmacological activity of rhein metal complexes [dissertation]. Chengdu: Chengdu University of Traditional Chinese Medicine;2014.

    Google Scholar 

  101. Yang X, Sun G, Yang C, et al. Novel rhein analogues as potential anticancer agents. Chem Med Chem 2011;6:2294–2301.

    Article  CAS  PubMed  Google Scholar 

  102. Cai J, Duan Y, Yu J, et al. Bone-targeting glycol and NSAIDS ester prodrugs of rhein: synthesis, hydroxyapatite affinity, stability, anti-inflammatory, ulcerogenicity index and pharmacokinetics studies. Eur J Med Chem 2012;55:409–419.

    Article  CAS  PubMed  Google Scholar 

  103. Huang J, Zhang Z, Huang P, et al. Design, synthesis and biological evaluation of rhein derivatives as anticancer agents. RSC Med Chem 2016;(9):1812–1818.

    Google Scholar 

  104. Yao G, Ye M, Huang R, et al. Synthesis and antitumor activities of novel rhein α-aminophosphonates conjugates. Bioorg Med Chem Lett 2014;24:501–507.

    Article  CAS  PubMed  Google Scholar 

  105. Teng Y, Kao M, Huang S, et al. Novel application of rhein and its prodrug diacerein for reversing cancer-related multidrug resistance through the dual inhibition of P-glycoprotein efflux and STAT3-mediated P-glycoprotein expression. Biomed Pharmacother 2022;150:112995.

    Article  CAS  PubMed  Google Scholar 

  106. Yang B, Xie Y, Guo M, et al. Nephrotoxicity and Chinese herbal medicine. Clin J Am Soc Nephro 2018;13:1605–1611.

    Article  CAS  Google Scholar 

  107. Huang CH, Chan WN. Rhein induces oxidative stress and apoptosis in mouse blastocysts and has immune toxic effects during embryonic development. Int J Mol Sci 2017;18:2018.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Li Y, Shen F, Bao Y, et al. Apoptotic effects of rhein through the mitochondrial pathways, two death receptor pathways, and reducing autophagy in human liver L02 cells. Environ Toxicol 2019;34:1292–1302.

    Article  CAS  PubMed  Google Scholar 

  109. Xu Y, Mao X, Qin B, et al. In vitro and in vivo metabolic activation of rhein and characterization of glutathione conjugates derived from rhein. Chem Biol Interact 2018;283:1–9.

    Article  CAS  PubMed  Google Scholar 

  110. Yuan Y, Zheng J, Wang M, et al. Metabolic activation of rhein: insights into the potential toxicity induced by rhein-containing herbs. J Agr Food Chem 2016;64:5742–5750.

    Article  CAS  Google Scholar 

  111. Sun H, Yang JP, Mao Y, et al. Involvement of Fas-dependent pathway in rhein-induced apoptosis of HK-2 cells. J China Pharm Univ (Chin) 2015;46:469–475.

    CAS  Google Scholar 

  112. Yang JP, Sun H, Wang DD, et al. MAPK signal transduction pathway involves in rhein-induced apoptosis in HK-2 cells. Chin J Exp Tradit Med Form (Chin) 2015;21:147–151.

    CAS  Google Scholar 

  113. Mao Y, Zhang MC, Yang JP, et al. The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells. Toxicol Res (Camb) 2017;6:297–304.

    Article  CAS  PubMed  Google Scholar 

  114. Hu YF, Huang WY, Li YQ, et al. Mechanism of rhein on renal toxicity of mice. Chin J Exp Tradit Med Form (Chin) 2019;25:54–59.

    Google Scholar 

  115. Chueakula N, Jaikumkao K, Arjinajarn P, et al. Diacerein alleviates kidney injury through attenuating inflammation and oxidative stress in obese insulin-resistant rats. Free Radical Bio Med 2018;115:146–155.

    Article  CAS  Google Scholar 

  116. Barakat N, Barakat LAA, Zakaria MM, et al. Diacerein ameliorates kidney injury induced by cisplatin in rats by activation of Nrf2/Ho-1 pathway and Bax down-regulation. Saudi J Biol Sci 2021;28:7219–7226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang XL, Huang XJ, Liu FZ, et al. Effects of anti-inflammatory drugs of diacerein on glucose and lipid metabolism in type 2 diabetic rats. J Med Postgrad (Chin) 2017;30:36–41.

    Google Scholar 

  118. Huang ZL, Huang XJ, Huang XL, et al. Effect of diacerein on inflammatory cytokines and adipose metabolism as well as the expression of chemerin in adipose tissue of type 2 diabetic rats. J Xi’an Jiaotong Univ (Med Sci, Chin) 2017;38:693–697.

    Google Scholar 

  119. Cong XD, Ding MJ, Dai DZ, et al. ER stress, P66shc, and P-Akt/Akt mediate adjuvant-induced inflammation, which is blunted by argirein, a supermolecule and rhein in rats. Inflammation 2012;35:1031–1040.

    Article  CAS  PubMed  Google Scholar 

  120. Tang H, Li L, Wang J, et al. Effects of arginine on lipid metabolism and endoplasmic reticulum stress in diabetic rats. Chin Tradit Patent Med (Chin) 2021;43:2490–2495.

    Google Scholar 

  121. Li Q, Su J, Jin SJ, et al. Argirein alleviates vascular endothelial insulin resistance through suppressing the activation of Nox4-dependent O2- production in diabetic rats. Free Radical Bio Med 2018;121:169–179.

    Article  CAS  Google Scholar 

  122. Lin Y, Hu G, Li K, et al. The protection of rhein lysinate to liver in diabetic mice induced by high-fat diet and streptozotocin. Arch Pharm Res 2015;38:885–892.

    Article  CAS  PubMed  Google Scholar 

  123. Lin YJ, Zhen YZ, Wei JB, et al. Rhein lysinate protects renal function in diabetic nephropathy of KK/HlJ mice. Exp Ther Med 2017;14:5801–5808.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hu G, Liu J, Zhen Y, et al. Rhein lysinate increases the median survival time of SAMP10 mice: protective role in the kidney. Acta Pharmacol Sin 2013;34:515–521.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Wang WY, Zhao Y, Liu DX, et al. Preparation of rhein solid dispersion and its effects on experimental diabetic nephropathy in rats. West China J Pharm Sci (Chin) 2012;27:32–35.

    Google Scholar 

  126. Xue J, Wang L, Sun Z, et al. Basic research in diabetic nephropathy health care: a study of the renoprotective mechanism of metformin. J Med Syst 2019;43:266.

    Article  PubMed  Google Scholar 

  127. Yao W, Xu Z, Sun J, et al. Deoxycholic acid-functionalised nanoparticles for oral delivery of rhein. Eur J Pharm Sci 2021;159:105713.

    Article  CAS  PubMed  Google Scholar 

  128. Kamaly N, He JC, Ausiello DA, et al. Nanomedicines for renal disease: current status and future applications. Nat Rev Nephrol 2016;12:738–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Feng H, Zhu Y, Fu Z, et al. Preparation, characterization, and in vivo study of rhein solid lipid nanoparticles for oral delivery. Chem Biol Drug Des 2017;90:867–872.

    Article  CAS  PubMed  Google Scholar 

  130. Lohmann V, Rolland M, Truong NP, et al. Controlling size, shape, and charge of nanoparticles via low-energy miniemulsion and heterogeneous RAFT polymerization. Eur Polym J 2022;176:111417.

    Article  CAS  Google Scholar 

  131. Wang G, Li Q, Chen D, et al. Kidney-targeted rhein-loaded liponanoparticles for diabetic nephropathy therapy via size control and enhancement of renal cellular uptake. Theranostics 2019;9:6191–6208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen D, Han S, Zhu Y, et al. Kidney-targeted drug delivery via rhein-loaded polyethyleneglycol-co-polycaprolactone-co-polyethylenimine nanoparticles for diabetic nephropathy therapy. Int J Nano Med 2018;13:3507–3527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Tang YP conceived and designed the review. Mao X searched the literature and drafted the manuscript. Xu DQ and Fu RJ examined the literature and made the figures. Zhang S edited the manuscript. Yue SJ and Tang YP made a critical revision of the review. All authors contributed to the article and approved the final version for publication.

Corresponding author

Correspondence to Yu-ping Tang.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Supported by the National Key R&D Program of China (No. 2019YFC1711000) and Subject Innovation Team of Shaanxi University of Chinese Medicine (No. 2019-YL10)

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Xu, Dq., Yue, Sj. et al. Potential Medicinal Value of Rhein for Diabetic Kidney Disease. Chin. J. Integr. Med. 29, 951–960 (2023). https://doi.org/10.1007/s11655-022-3591-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3591-y

Keywords

Navigation