Skip to main content

Advertisement

Log in

Modes of podocyte death in diabetic kidney disease: an update

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Diabetic kidney disease (DKD) accounts for a large proportion of end-stage renal diseases that require renal replacement therapies including dialysis and transplantation. Therefore, it is critical to understand the occurrence and development of DKD. Podocytes are mainly injured during the development of DKD, ultimately leading to their extensive death and loss. In turn, the injury and death of glomerular podocytes are also the main culprits of DKD. This review introduces the characteristics of podocytes and summarizes the modes of their death in DKD, including apoptosis, autophagy, mitotic catastrophe (MC), anoikis, necroptosis, and pyroptosis. Apoptosis is characterized by nuclear condensation and the formation of apoptotic bodies, and it exerts a different effect from autophagy in mediating DKD-induced podocyte loss. MC mediates a faulty mitotic process while anoikis separates podocytes from the basement membrane. Moreover, pyroptosis activates inflammatory factors to aggravate podocyte injuries whilst necroptosis drives signaling cascades, such as receptor-interacting protein kinases 1 and 3 and mixed lineage kinase domain-like, ultimately promoting the death of podocytes. In conclusion, a thorough knowledge of the modes of podocyte death in DKD can help us understand the development of DKD and lay the foundation for strategies in DKD disease therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

Ang II:

Angiotensin II

AOPPs:

Advanced oxidation protein products

AMPK:

AMP -activated protein kinase

BASP1:

Brain acid-soluble protein 1

CB1R:

Cannabinoid receptor 1

Cdk5:

Cyclin-dependent kinase 5

CD2AP:

CD2-associated protein

DKD:

Diabetic kidney disease

EMT:

Epithelial-mesenchymal transformation

ERS:

Endoplasmic reticulum stress

EVs:

Extracellular vesicles

FOXO4:

Forkhead box O4

FSGS:

Focal segmental glomerulosclerosis

FSP1:

Fibroblast-specific protein 1

GBM:

Glomerular basement membrane

GSDMD:

Gasdermin D

GSK3β:

Glycogen synthase kinase-3β

HG:

High glucose

LN:

Lupus nephritis

LRP6:

Lipoprotein receptor-related protein 6

MAD:

Mitotic arrest deficiency

MC:

Mitotic catastrophe

MCNS:

Minimal change nephrotic syndrome

MDM2:

Murine double minute 2

miRNAs:

MicroRNAs

MLKL:

Mixed lineage kinase domain-like

mTOR:

Mammalian target of rapamycin

NLRP3:

Nucleotide-oligomerization domain-like receptor 3

PPARγ:

Peroxisome proliferator-activated receptor gamma

PI3-K:

Phosphoinositide 3-kinase

RAGE:

Receptors for AGEs

RARRES1:

Retinoic acid receptor responder protein 1

RIPK1:

Receptor-interacting protein kinase 1

ROS:

Reactive oxygen species

RIOK1:

RIO kinase 1

TGF-β:

Transforming growth factor-β

VEGF:

Vascular endothelial growth factor

Wnt:

Wingless‐type

WT1:

Wilms' tumor 1 transcription factor

References

  1. Brosius FC, Tuttle KR, Kretzler M (2016) JAK inhibition in the treatment of diabetic kidney disease. Diabetologia 59(8):1624–1627. https://doi.org/10.1007/s00125-016-4021-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou D, Zhou M, Wang Z et al (2019) PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis 10(7):524. https://doi.org/10.1038/s41419-019-1754-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Denhez B, Lizotte F, Guimond MO et al (2015) Increased SHP-1 protein expression by high glucose levels reduces nephrin phosphorylation in podocytes. J Biol Chem 290(1):350–358. https://doi.org/10.1074/jbc.M114.612721

    Article  CAS  PubMed  Google Scholar 

  4. Manda G, Checherita AI, Comanescu MV, Hinescu ME (2015) Redox signaling in diabetic nephropathy: hypertrophy versus death choices in mesangial cells and podocytes. Mediators Inflamm 2015:604208. https://doi.org/10.1155/2015/604208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li JJ, Kwak SJ, Jung DS et al (2007) Podocyte biology in diabetic nephropathy. Kidney Int Suppl 106:S36-42. https://doi.org/10.1038/sj.ki.5002384

    Article  CAS  Google Scholar 

  6. Wang X, Liu J, Zhen J et al (2014) Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86(4):712–725. https://doi.org/10.1038/ki.2014.111

    Article  CAS  PubMed  Google Scholar 

  7. Tuncdemir M, Ozturk M (2011) The effects of angiotensin-II receptor blockers on podocyte damage and glomerular apoptosis in a rat model of experimental streptozotocin-induced diabetic nephropathy. Acta Histochem 113(8):826–832. https://doi.org/10.1016/j.acthis.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  8. Altintas MM, Reiser J (2019) Podocytes: way to go. Am J Pathol 189(2):226–228. https://doi.org/10.1016/j.ajpath.2018.11.003

    Article  PubMed  Google Scholar 

  9. Lin JS, Susztak K (2016) Podocytes: the weakest link in diabetic kidney disease? Curr Diab Rep 16(5):45. https://doi.org/10.1007/s11892-016-0735-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mathew S, Chen X, Pozzi A, Zent R (2012) Integrins in renal development. Pediatr Nephrol 27(6):891–900. https://doi.org/10.1007/s00467-011-1890-1

    Article  PubMed  Google Scholar 

  11. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83(1):253–307. https://doi.org/10.1152/physrev.00020.2002

    Article  CAS  PubMed  Google Scholar 

  12. Saleem MA, O’Hare MJ, Reiser J et al (2002) A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression. J Am Soc Nephrol 13(3):630–638. https://doi.org/10.1681/ASN.V133630

    Article  CAS  PubMed  Google Scholar 

  13. Moreno JA, Sanchez-Nino MD, Sanz AB et al (2008) A slit in podocyte death. Curr Med Chem 15(16):1645–1654. https://doi.org/10.2174/092986708784911542

    Article  CAS  PubMed  Google Scholar 

  14. Liu M, Liang K, Zhen J et al (2017) Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun 8(1):413. https://doi.org/10.1038/s41467-017-00498-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anil Kumar P, Welsh GI, Saleem MA, Menon RK (2014) Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 5:151. https://doi.org/10.3389/fendo.2014.00151

    Article  CAS  Google Scholar 

  16. Wolf G, Chen S, Ziyadeh FN (2005) From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54(6):1626–1634. https://doi.org/10.2337/diabetes.54.6.1626

    Article  CAS  PubMed  Google Scholar 

  17. Hostetter TH (2003) Hyperfiltration and glomerulosclerosis. Semin Nephrol 23(2):194–199. https://doi.org/10.1053/anep.2003.50017

    Article  CAS  PubMed  Google Scholar 

  18. Langham RG, Kelly DJ, Cox AJ et al (2002) Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia 45(11):1572–1576. https://doi.org/10.1007/s00125-002-0946-y

    Article  CAS  PubMed  Google Scholar 

  19. Minakawa A, Fukuda A, Sato Y et al (2019) Podocyte hypertrophic stress and detachment precedes hyperglycemia or albuminuria in a rat model of obesity and type2 diabetes-associated nephropathy. Sci Rep 9(1):18485. https://doi.org/10.1038/s41598-019-54692-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dobrinskikh E, Okamura K, Kopp JB et al (2014) Human podocytes perform polarized, caveolae-dependent albumin endocytosis. Am J Physiol Renal Physiol 306(9):F941-951. https://doi.org/10.1152/ajprenal.00532.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Agrawal S, Smoyer WE (2017) Role of albumin and its modifications in glomerular injury. Pflugers Arch 469(7–8):975–982. https://doi.org/10.1007/s00424-017-2029-4

    Article  CAS  PubMed  Google Scholar 

  22. Qin XS, Tsukaguchi H, Shono A et al (2009) Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. J Am Soc Nephrol 20(12):2534–2545. https://doi.org/10.1681/ASN.2009010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tossidou I, Teng B, Menne J et al (2010) Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis. PLoS ONE 5(4):e10185. https://doi.org/10.1371/journal.pone.0010185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Teng B, Schroder P, Muller-Deile J et al (2016) CIN85 deficiency prevents nephrin endocytosis and proteinuria in diabetes. Diabetes 65(12):3667–3679. https://doi.org/10.2337/db16-0081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okamura K, Dummer P, Kopp J et al (2013) Endocytosis of albumin by podocytes elicits an inflammatory response and induces apoptotic cell death. PLoS ONE 8(1):e54817. https://doi.org/10.1371/journal.pone.0054817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Castrop H, Schiessl IM (2017) Novel routes of albumin passage across the glomerular filtration barrier. Acta Physiol (Oxf) 219(3):544–553. https://doi.org/10.1111/apha.12760

    Article  CAS  Google Scholar 

  27. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  28. Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39:1. 10.1042/BSR20180992

  29. Hockenbery D (1995) Defining apoptosis. Am J Pathol 146(1):16–19

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen YQ, Wang XX, Yao XM et al (2011) MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol 34(6):549–559. https://doi.org/10.1159/000333809

    Article  CAS  PubMed  Google Scholar 

  31. Chuang PY, Yu Q, Fang W et al (2007) Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney Int 72(8):965–976. https://doi.org/10.1038/sj.ki.5002456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chuang PY, Dai Y, Liu R et al (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. PLoS ONE 6(8):e23566. https://doi.org/10.1371/journal.pone.0023566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu J, Wu H, Liu ZY et al (2017) Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med 40(4):1185–1193. https://doi.org/10.3892/ijmm.2017.3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ha TS, Hong EJ, Han GD (2015) Diabetic conditions downregulate the expression of CD2AP in podocytes via PI3-K/Akt signalling. Diabetes Metab Res Rev 31(1):50–60. https://doi.org/10.1002/dmrr.2562

    Article  CAS  PubMed  Google Scholar 

  35. Susztak K, Raff AC, Schiffer M, Böttinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55(1):225–233

    Article  CAS  Google Scholar 

  36. Eid AA, Ford BM, Bhandary B et al (2013) Mammalian target of rapamycin regulates Nox4-mediated podocyte depletion in diabetic renal injury. Diabetes 62(8):2935–2947. https://doi.org/10.2337/db12-1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen X, Liu W, Xiao J et al (2020) FOXO3a accumulation and activation accelerate oxidative stress-induced podocyte injury. FASEB J 34(10):13300–13316. https://doi.org/10.1096/fj.202000783R

    Article  CAS  PubMed  Google Scholar 

  38. Cao Y, Hao Y, Li H et al (2014) Role of endoplasmic reticulum stress in apoptosis of differentiated mouse podocytes induced by high glucose. Int J Mol Med 33(4):809–816. https://doi.org/10.3892/ijmm.2014.1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao AL, Wang L, Chen X et al (2016) Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 96(6):610–622. https://doi.org/10.1038/labinvest.2016.44

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Gao X, Chen S et al (2017) Cyclin-dependent kinase 5 contributes to endoplasmic reticulum stress induced podocyte apoptosis via promoting MEKK1 phosphorylation at Ser280 in diabetic nephropathy. Cell Signal 31:31–40. https://doi.org/10.1016/j.cellsig.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  41. Lim SK, Park SH (2012) The high glucose-induced stimulation of B1R and B2R expression via CB(1)R activation is involved in rat podocyte apoptosis. Life Sci 91(19–20):895–906. https://doi.org/10.1016/j.lfs.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Li H (2020) MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep 40:4. 10.1042/BSR20193653

  43. Guo J, Han J, Liu J, Wang S (2020) MicroRNA-770-5p contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. Braz J Med Biol Res 53(9):e9360. https://doi.org/10.1590/1414-431x20209360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou Z, Wan J, Hou X et al (2017) MicroRNA-27a promotes podocyte injury via PPARgamma-mediated beta-catenin activation in diabetic nephropathy. Cell Death Dis 8(3):e2658. https://doi.org/10.1038/cddis.2017.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai X, Geng J, Li X et al (2018) Long noncoding RNA LINC01619 regulates MicroRNA-27a/Forkhead box protein O1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. Antioxid Redox Signal 29(4):355–376. https://doi.org/10.1089/ars.2017.7278

    Article  CAS  PubMed  Google Scholar 

  46. Zhao SM, Zhang T, Qiu Q et al (2019) MiRNA-337 leads to podocyte injury in mice with diabetic nephropathy. Eur Rev Med Pharmacol Sci 23(19):8485–8492. https://doi.org/10.26355/eurrev_201910_19161

    Article  PubMed  Google Scholar 

  47. Zha F, Bai L, Tang B et al (2019) MicroRNA-503 contributes to podocyte injury via targeting E2F3 in diabetic nephropathy. J Cell Biochem 120(8):12574–12581. https://doi.org/10.1002/jcb.28524

    Article  CAS  PubMed  Google Scholar 

  48. Yang H, Wang Q, Li S (2016) MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1. Biochem Biophys Res Commun 471(4):582–588. https://doi.org/10.1016/j.bbrc.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  49. Qian X, Tan J, Liu L et al (2018) MicroRNA-134-5p promotes high glucose-induced podocyte apoptosis by targeting bcl-2. Am J Transl Res 10(3):989–997

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao F, Yao M, Shi Y et al (2013) Notch pathway is involved in high glucose-induced apoptosis in podocytes via Bcl-2 and p53 pathways. J Cell Biochem 114(5):1029–1038. https://doi.org/10.1002/jcb.24442

    Article  CAS  PubMed  Google Scholar 

  51. Peixoto EB, Papadimitriou A, Teixeira DA et al (2015) Reduced LRP6 expression and increase in the interaction of GSK3beta with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. J Nutr Biochem 26(4):416–430. https://doi.org/10.1016/j.jnutbio.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  52. Chen A, Feng Y, Lai H et al (2020) Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. J Clin Invest 130(10):5523–5535. https://doi.org/10.1172/JCI140155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Xu C, Ye Q et al (2021) Podocyte apoptosis in diabetic nephropathy by BASP1 activation of the p53 pathway via WT1. Acta Physiol (Oxf) 232(1):e13634. https://doi.org/10.1111/apha.13634

    Article  CAS  Google Scholar 

  54. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. https://doi.org/10.1038/nature06639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721. https://doi.org/10.1126/science.290.5497.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:9. https://doi.org/10.3390/ijms18091865

  58. Hartleben B, Gödel M, Meyer-Schwesinger C et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest 120(4):1084–1096. https://doi.org/10.1172/jci39492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xin W, Li Z, Xu Y et al (2016) Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance. Metabolism 65(9):1307–1315. https://doi.org/10.1016/j.metabol.2016.05.015

    Article  CAS  PubMed  Google Scholar 

  60. Woo CY, Kc R, Kim M et al (2020) Autophagic flux defect in diabetic kidney disease results in megamitochondria formation in podocytes. Biochem Biophys Res Commun 521(3):660–667. https://doi.org/10.1016/j.bbrc.2019.10.132

    Article  CAS  PubMed  Google Scholar 

  61. Li Z, Yuan Y, Meng Y et al (2017) Autophagy upregulation ameliorates cell injury in Sequestosome 1 knockout podocytes in vitro. Biochem Biophys Res Commun 490(2):98–103. https://doi.org/10.1016/j.bbrc.2017.05.102

    Article  CAS  PubMed  Google Scholar 

  62. Godel M, Hartleben B, Herbach N et al (2011) Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest 121(6):2197–2209. https://doi.org/10.1172/JCI44774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dai H, Liu Q, Liu B (2017) Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res 2017:2615286. https://doi.org/10.1155/2017/2615286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ji J, Zhao Y, Na C et al (2019) Connexin 43autophagy loop in the podocyte injury of diabetic nephropathy. Int J Mol Med 44(5):1781–1788. https://doi.org/10.3892/ijmm.2019.4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao T, Guan X, Nie L et al (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394(1–2):145–154. https://doi.org/10.1007/s11010-014-2090-7

    Article  CAS  PubMed  Google Scholar 

  66. Zhao X, Chen Y, Tan X et al (2018) Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 245(2):235–248. https://doi.org/10.1002/path.5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu WJ, Gan Y, Huang WF et al (2019) Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease. Cell Death Dis 10(11):806. https://doi.org/10.1038/s41419-019-2002-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Y, Zhang J, Wang Y, Zeng X (2017) Apelin involved in progression of diabetic nephropathy by inhibiting autophagy in podocytes. Cell Death Dis 8(8):e3006. https://doi.org/10.1038/cddis.2017.414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu J, Li QX, Wang XJ et al (2016) beta-Arrestins promote podocyte injury by inhibition of autophagy in diabetic nephropathy. Cell Death Dis 7:e2183. https://doi.org/10.1038/cddis.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hou Y, Lin S, Qiu J et al (2020) NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 521(3):791–798. https://doi.org/10.1016/j.bbrc.2019.10.194

    Article  CAS  PubMed  Google Scholar 

  71. Swanson PE, Carroll SB, Zhang XF, Mackey MA (1995) Spontaneous premature chromosome condensation, micronucleus formation, and non-apoptotic cell death in heated HeLa S3 cells. Ultrastructural observations Am J Pathol 146(4):963–971

    CAS  PubMed  Google Scholar 

  72. Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23(16):2825–2837. https://doi.org/10.1038/sj.onc.1207528

    Article  CAS  PubMed  Google Scholar 

  73. Mulay SR, Thomasova D, Ryu M et al (2013) Podocyte loss involves MDM2-driven mitotic catastrophe. J Pathol 230(3):322–335. https://doi.org/10.1002/path.4193

    Article  CAS  PubMed  Google Scholar 

  74. Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Migliorini A, Angelotti ML, Mulay SR et al (2013) The antiviral cytokines IFN-alpha and IFN-beta modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol 183(2):431–440. https://doi.org/10.1016/j.ajpath.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  76. Liapis H, Romagnani P, Anders HJ (2013) New insights into the pathology of podocyte loss: mitotic catastrophe. Am J Pathol 183(5):1364–1374. https://doi.org/10.1016/j.ajpath.2013.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomasova D, Anders HJ (2015) Cell cycle control in the kidney. Nephrol Dial Transplant 30(10):1622–1630. https://doi.org/10.1093/ndt/gfu395

    Article  CAS  PubMed  Google Scholar 

  78. Hagen M, Pfister E, Kosel A et al (2016) Cell cycle re-entry sensitizes podocytes to injury induced death. Cell Cycle 15(14):1929–1937. https://doi.org/10.1080/15384101.2016.1191710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lasagni L, Ballerini L, Angelotti ML et al (2010) Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 28(9):1674–1685. https://doi.org/10.1002/stem.492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lasagni L, Lazzeri E, Shankland SJ et al (2013) Podocyte mitosis - a catastrophe. Curr Mol Med 13(1):13–23. https://doi.org/10.2174/1566524011307010013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shankland SJ (2006) The podocyte’s response to injury: role in proteinuria and glomerulosclerosis. Kidney Int 69(12):2131–2147. https://doi.org/10.1038/sj.ki.5000410

    Article  CAS  PubMed  Google Scholar 

  82. Hara M, Oohara K, Dai DF, Liapis H (2019) Mitotic catastrophe causes podocyte loss in the urine of human diabetics. Am J Pathol 189(2):248–257. https://doi.org/10.1016/j.ajpath.2018.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nagata M, Nakayama K, Terada Y et al (1998) Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol 153(5):1511–1520. https://doi.org/10.1016/s0002-9440(10)65739-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang H, Lei CT, Ye C et al (2017) MDM2 is implicated in high-glucose-induced podocyte mitotic catastrophe via Notch1 signalling. J Cell Mol Med 21(12):3435–3444. https://doi.org/10.1111/jcmm.13253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Su H, Wan Q, Tian XJ et al (2015) MAD2B contributes to podocyte injury of diabetic nephropathy via inducing cyclin B1 and Skp2 accumulation. Am J Physiol Renal Physiol 308(7):F728-736. https://doi.org/10.1152/ajprenal.00409.2014

    Article  CAS  PubMed  Google Scholar 

  86. Gilmore AP (2005) Anoikis. Cell Death Differ 12(Suppl 2):1473–1477. https://doi.org/10.1038/sj.cdd.4401723

    Article  CAS  PubMed  Google Scholar 

  87. Weil EJ, Lemley KV, Yee B et al (2011) Podocyte detachment in type 2 diabetic nephropathy. Am J Nephrol 33(Suppl 1):21–24. https://doi.org/10.1159/000327047

    Article  PubMed  PubMed Central  Google Scholar 

  88. Reddy GR, Kotlyarevska K, Ransom RF, Menon RK (2008) The podocyte and diabetes mellitus: is the podocyte the key to the origins of diabetic nephropathy? Curr Opin Nephrol Hypertens 17(1):32–36. https://doi.org/10.1097/MNH.0b013e3282f2904d

    Article  PubMed  Google Scholar 

  89. Regoli M, Bendayan M (1997) Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia 40(1):15–22. https://doi.org/10.1007/s001250050637

    Article  CAS  PubMed  Google Scholar 

  90. Chen HC, Chen CA, Guh JY et al (2000) Altering expression of alpha3beta1 integrin on podocytes of human and rats with diabetes. Life Sci 67(19):2345–2353. https://doi.org/10.1016/s0024-3205(00)00815-8

    Article  CAS  PubMed  Google Scholar 

  91. Sawada K, Toyoda M, Kaneyama N et al (2016) Upregulation of α3β1-integrin in podocytes in early-stage diabetic nephropathy. J Diabetes Res 2016:9265074. https://doi.org/10.1155/2016/9265074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nakamura T, Ushiyama C, Suzuki S et al (2000) Urinary excretion of podocytes in patients with diabetic nephropathy. Nephrol Dial Transplant 15(9):1379–1383. https://doi.org/10.1093/ndt/15.9.1379

    Article  CAS  PubMed  Google Scholar 

  93. Petermann AT, Krofft R, Blonski M et al (2003) Podocytes that detach in experimental membranous nephropathy are viable. Kidney Int 64(4):1222–1231. https://doi.org/10.1046/j.1523-1755.2003.00217.x

    Article  PubMed  Google Scholar 

  94. Yamaguchi Y, Iwano M, Suzuki D et al (2009) Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 54(4):653–664. https://doi.org/10.1053/j.ajkd.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  95. Inoki K, Mori H, Wang J et al (2011) mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest 121(6):2181–2196. https://doi.org/10.1172/JCI44771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xu Y, Gao H, Hu Y et al (2019) High glucose-induced apoptosis and necroptosis in podocytes is regulated by UCHL1 via RIPK1/RIPK3 pathway. Exp Cell Res 382(2):111463. https://doi.org/10.1016/j.yexcr.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  97. Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28(1):9–21. https://doi.org/10.1038/cr.2017.133

    Article  CAS  PubMed  Google Scholar 

  98. Khoury MK, Gupta K, Franco SR, Liu B (2020) Necroptosis in the Pathophysiology of Disease. Am J Pathol 190(2):272–285. https://doi.org/10.1016/j.ajpath.2019.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24(7):1184–1195. https://doi.org/10.1038/cdd.2017.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. He S, Huang S, Shen Z (2016) Biomarkers for the detection of necroptosis. Cell Mol Life Sci 73(11–12):2177–2181. https://doi.org/10.1007/s00018-016-2192-3

    Article  CAS  PubMed  Google Scholar 

  101. Sosna J, Voigt S, Mathieu S et al (2013) The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 11:76. https://doi.org/10.1186/1478-811x-11-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cheng Q, Pan J, Zhou ZL et al (2021) Caspase-11/4 and gasdermin D-mediated pyroptosis contributes to podocyte injury in mouse diabetic nephropathy. Acta Pharmacol Sin 42(6):954–963. https://doi.org/10.1038/s41401-020-00525-z

    Article  CAS  PubMed  Google Scholar 

  103. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  104. Li X, Zeng L, Cao C et al (2017) Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res 350(2):327–335. https://doi.org/10.1016/j.yexcr.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  105. Ding X, Jing N, Shen A et al (2021) MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J Endocrinol Invest 44(6):1175–1184. https://doi.org/10.1007/s40618-020-01401-7

    Article  CAS  PubMed  Google Scholar 

  106. Li F, Mao X, Zhuang Q et al (2019) Inhibiting 4E-BP1 re-activation represses podocyte cell cycle re-entry and apoptosis induced by adriamycin. Cell Death Dis 10(3):241. https://doi.org/10.1038/s41419-019-1480-x

    Article  PubMed  PubMed Central  Google Scholar 

  107. Qi YY, Zhou XJ, Cheng FJ et al (2018) Increased autophagy is cytoprotective against podocyte injury induced by antibody and interferon-alpha in lupus nephritis. Ann Rheum Dis 77(12):1799–1809. https://doi.org/10.1136/annrheumdis-2018-213028

    Article  CAS  PubMed  Google Scholar 

  108. Ogawa-Akiyama A, Sugiyama H, Kitagawa M et al (2020) Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome. PLoS ONE 15(1):e0228337. https://doi.org/10.1371/journal.pone.0228337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guo C, Fu R, Zhou M et al (2019) Pathogenesis of lupus nephritis: RIP3 dependent necroptosis and NLRP3 inflammasome activation. J Autoimmun 103:102286. https://doi.org/10.1016/j.jaut.2019.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kim SY, Park S, Lee SW et al (2021) RIPK3 Contributes to Lyso-Gb3-Induced Podocyte Death. Cells 10:2. https://doi.org/10.3390/cells10020245

  111. Ding F, Wickman L, Wang SQ et al (2017) Accelerated podocyte detachment and progressive podocyte loss from glomeruli with age in Alport Syndrome. Kidney Int 92(6):1515–1525. https://doi.org/10.1016/j.kint.2017.05.017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was financially supported by the National Natural Science Foundation of China grants (81770711, 81873602, 81800610, 81974096, 81961138007, 81974097, 81900629, 82000664, 82170773, 82100794, 82100729).

Author information

Authors and Affiliations

Authors

Contributions

CZ conceptualized the review. AJ wrote a draft of the review. CZ and AS revised the paper. The figures were drawn by AJ. CZ performed the final edits.

Corresponding author

Correspondence to Chun Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, A., Song, A. & Zhang, C. Modes of podocyte death in diabetic kidney disease: an update. J Nephrol 35, 1571–1584 (2022). https://doi.org/10.1007/s40620-022-01269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01269-1

Keywords

Navigation