Skip to main content

Advertisement

Log in

Klotho suppresses TNF-α-induced expression of adhesion molecules in the endothelium and attenuates NF-κB activation

  • Original Paper
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Klotho is a senescence suppressor protein that, when overexpressed, extends the lifespan of mice. Klotho-disrupted mice exhibit atherosclerosis and endothelial dysfunction, which led us to investigate the effect of the Klotho protein on vascular inflammation, particularly adhesion molecule expression. In this study, human umbilical vein endothelial cells (HUVECs) were preincubated with Klotho protein and then exposed to tumor necrosis factor-α (TNF-α) or vehicle. Reverse transcription-PCR and Western blot analyses revealed that Klotho suppressed TNF-α-induced expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). NF-κB activation, IκB phosphorylation induced by TNF-α were also attenuated by Klotho protein administration. The inhibition of eNOS phosphorylation by TNF-α was reversed by Klotho. Furthermore, Klotho inhibited TNF-α-induced monocyte adhesion to HUVECs and suppressed adhesion molecule expression in an organ culture of the rat aorta. These results suggest that Klotho suppresses TNF-α-induced expression of adhesion molecules and NF-κB activation. Klotho may have a role in the modulation of endothelial inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kuro-o, Y. Matsumura, H. Aizawa, H. Kawaguchi, T. Suga, T. Utsugi, Y. Ohyama, M. Kurabayashi, T. Kaname, E. Kume, H. Iwasaki, A. Iida, T. Shiraki-Iida, S. Nishikawa, R. Nagai, Y.I. Nabeshima, Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Nabeshima, Klotho: a fundamental regulator of aging. Ageing Res. Rev. 1, 627–638 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. H. Kurosu, M. Yamamoto, J.D. Clark, J.V. Pastor, A. Nandi, P. Gurnani, O.P. McGuinness, H. Chikuda, M. Yamaguchi, H. Kawaguchi, I. Shimomura, Y. Takayama, J. Herz, C.R. Kahn, K.P. Rosenblatt, M. Kuro-o, Suppression of aging in mice by the hormone Klotho. Science 309, 1829–1833 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. N. Koh, T. Fujimori, S. Nishiguchi, A. Tamori, S. Shiomi, T. Nakatani, K. Sugimura, T. Kishimoto, S. Kinoshita, T. Kuroki, Y. Nabeshima, Severely reduced production of klotho in human chronic renal failure kidney. Biochem. Biophys. Res. Commun. 280, 1015–1020 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. A. Kamitani, H. Yamada, M. Kinuta, M. Watanabe, S.A. Li, T. Matsukawa, M. McNiven, H. Kumon, K. Takei, Distribution of dynamins in testis and their possible relation to spermatogenesis. Biochem. Biophys. Res. Commun. 294, 261–267 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. K. Miyamoto, M. Ito, H. Segawa, M. Kuwahata, Molecular targets of hyperphosphataemia in chronic renal failure. Nephrol Dial Transplant 18(Suppl 3), iii79–iii80 (2003)

    CAS  PubMed  Google Scholar 

  7. M. Yamamoto, J.D. Clark, J.V. Pastor, P. Gurnani, A. Nandi, H. Kurosu, M. Miyoshi, Y. Ogawa, D.H. Castrillon, K.P. Rosenblatt, M. Kuro-o, Regulation of oxidative stress by the anti-aging hormone klotho. J. Biol. Chem. 280, 38029–38034 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. H. Rakugi, N. Matsukawa, K. Ishikawa, J. Yang, M. Imai, M. Ikushima, Y. Maekawa, I. Kida, J. Miyazaki, T. Ogihara, Anti-oxidative effect of Klotho on endothelial cells through cAMP activation. Endocrine 31, 82–87 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. M. Ikushima, H. Rakugi, K. Ishikawa, Y. Maekawa, K. Yamamoto, J. Ohta, Y. Chihara, I. Kida, T. Ogihara, Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem. Biophys. Res. Commun. 339, 827–832 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. H. Kurosu, Y. Ogawa, M. Miyoshi, M. Yamamoto, A. Nandi, K.P. Rosenblatt, M.G. Baum, S. Schiavi, M.C. Hu, O.W. Moe, M. Kuro-o, Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281, 6120–6123 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. I. Urakawa, Y. Yamazaki, T. Shimada, K. Iijima, H. Hasegawa, K. Okawa, T. Fujita, S. Fukumoto, T. Yamashita, Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444, 770–774 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. T. Trepels, A.M. Zeiher, S. Fichtlscherer, The endothelium and inflammation. Endothelium 13, 423–429 (2006)

    Article  PubMed  Google Scholar 

  13. K. Larsson, Aspects on pathophysiological mechanisms in COPD. J. Intern. Med. 262, 311–340 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Saito, T. Yamagishi, T. Nakamura, Y. Ohyama, H. Aizawa, T. Suga, Y. Matsumura, H. Masuda, M. Kurabayashi, M. Kuro-o, Y. Nabeshima, R. Nagai, Klotho protein protects against endothelial dysfunction. Biochem. Biophys. Res. Commun. 248, 324–329 (1998)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Saito, T. Nakamura, Y. Ohyama, T. Suzuki, A. Iida, T. Shiraki-Iida, M. Kuro-o, Y. Nabeshima, M. Kurabayashi, R. Nagai, In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem. Biophys. Res. Commun. 276, 767–772 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. D.G. Harrison, Cellular and molecular mechanisms of endothelial cell dysfunction. J. Clin. Invest. 100, 2153–2157 (1997)

    Article  CAS  PubMed  Google Scholar 

  17. E. Galkina, K. Ley, Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 2292–2301 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. R. Nagai, Y. Saito, Y. Ohyama, H. Aizawa, T. Suga, T. Nakamura, M. Kurabayashi, M. Kuroo, Endothelial dysfunction in the klotho mouse and downregulation of klotho gene expression in various animal models of vascular and metabolic diseases. Cell. Mol. Life Sci. 57, 738–746 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. E. Jimi, S. Ghosh, Role of nuclear factor-kappaB in the immune system and bone. Immunol. Rev. 208, 80–87 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. J.M. Witkowski, M. Soroczynska-Cybula, E. Bryl, Z. Smolenska, A. Jozwik, Klotho—a common link in physiological and rheumatoid arthritis-related aging of human CD4+ lymphocytes. J. Immunol. 178, 771–777 (2007)

    CAS  PubMed  Google Scholar 

  21. M.L. Handel, L.B. McMorrow, E.M. Gravallese, Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum. 38, 1762–1770 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Kato, E. Arakawa, S. Kinoshita, A. Shirai, A. Furuya, K. Yamano, K. Nakamura, A. Iida, H. Anazawa, N. Koh, A. Iwano, A. Imura, T. Fujimori, M. Kuro-o, N. Hanai, K. Takeshige, Y. Nabeshima, Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem. Biophys. Res. Commun. 267, 597–602 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. J. Yang, N. Matsukawa, H. Rakugi, M. Imai, I. Kida, M. Nagai, J. Ohta, K. Fukuo, Y. Nabeshima, T. Ogihara, Upregulation of cAMP is a new functional signal pathway of Klotho in endothelial cells. Biochem. Biophys. Res. Commun. 301, 424–429 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. M. Imai, K. Ishikawa, N. Matsukawa, I. Kida, J. Ohta, M. Ikushima, Y. Chihara, X. Rui, H. Rakugi, T. Ogihara, Klotho protein activates the PKC pathway in the kidney and testis and suppresses 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression. Endocrine 25, 229–234 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. M.I. Cybulsky, M.A. Gimbrone Jr., Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251, 788–791 (1991)

    Article  CAS  PubMed  Google Scholar 

  26. A. Giatromanolaki, M.I. Koukourakis, D. Theodossiou, K. Barbatis, K. O’Byrne, A.L. Harris, K.C. Gatter, Comparative evaluation of angiogenesis assessment with anti-factor-VIII and anti-CD31 immunostaining in non-small cell lung cancer. Clin. Cancer Res. 3, 2485–2492 (1997)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to express gratitude Ms. Kazuko Iwasa and Ms. Eriko Nagata for their continuous support of our investigations. This work was supported by the Osaka-Medical Research Foundation for Incurable Diseases, research grants from Takeda Science Foundation, the Japan Research Foundation for Clinical Pharmacology, and Grants-in-Aid for scientific research from the Ministry of Education, Science, Sports, Culture, and Technology of Japan (18590265, 18590811, 19650188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Katsuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maekawa, Y., Ishikawa, K., Yasuda, O. et al. Klotho suppresses TNF-α-induced expression of adhesion molecules in the endothelium and attenuates NF-κB activation. Endocr 35, 341–346 (2009). https://doi.org/10.1007/s12020-009-9181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-009-9181-3

Keywords

Navigation