Skip to main content
Log in

Induction of multiple shoots in Oryza sativa: roles of thidiazuron, 6-benzylaminopurine, decapitation, flooding, and Ethrel® treatments

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The impact of different concentrations of thidiazuron (TDZ) and 6-benzylaminopurine (BAP) and the role of decapitation, flooding, and Ethrel® treatments were evaluated on direct in vitro caryopsis culture of rice. After 28 d of culture, multiple-shoot formation was observed from 50 to 90% of TDZ-treated seedlings. A similar but lower frequency response was observed using BAP-supplemented media. Furthermore, multiple shoots appeared to arise from the mesocotyl region of the seedlings. In subsequent experiments, isolation and transfer of mesocotyl segments to TDZ-supplemented media resulted in increased number of multiple shoots (10 to 12) as compared to intact seedlings (5 to 6). The formation of multiple shoots per seedling (13 to 15) and percent responding cultures with multiple shoots (70%) increased when decapitated rice seedlings were used instead of intact seedlings or mesocotyl segments. This demonstrated a possible role of physical stress in multiple-shoot formation along with other factors. Multiple shoots per seedling and percent responding cultures with multiple shoots also increased when intact seedlings were flooded with TDZ-supplemented media; however, flooding with distilled water and N6 had a very minor effect. Furthermore, the addition of Ethrel® to the culture media, which is metabolized within plant tissue to release ethylene, also resulted in multiple-shoot formation from seedlings. Based on these multiple lines of evidence, this study proposes that TDZ is acting to enhance multiple-shoot formation in this rice system through activation of stress-related gene(s) and signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Agustina M, Maisura M, Handayani RS (2020) The effect of different seed cutting treatments and concentrations of BAP for the successful in vitro micrografting of mangosteen (Garcinia mangostana L.). J Trop Hortic 3:1–5

    Article  Google Scholar 

  • Ananthan R, Mohanraj R, Narmatha Bai V (2018) In vitro regeneration, production, and storage of artificial seeds in Ceropegia barnesii, an endangered plant. In Vitro Cell Dev Biol - Plant 54:553–563

    Article  CAS  Google Scholar 

  • Arinaitwe G, Rubaihayo PR, Magambo MJS (2000) Proliferation rate effects of cytokinins on banana (Musa spp.) cultivars. Sci Hortic 86:13–21

    Article  CAS  Google Scholar 

  • Arndt F, Rusch R, Stllfried HV (1976) A new cotton defoliant. Plant Physiol 57:99

  • Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Satoh S (2011) Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc Natl Acad Sci 108:16128–16132

    Article  CAS  Google Scholar 

  • Azria D, Bhalla PL (2000) Plant regeneration from mature embryo-derived callus of Australian rice (Oryza sativa L.) varieties. Aust J Agri Res 51:305–312

    Article  Google Scholar 

  • Bartók T, Sági F (1990) A new, endosperm-supported callus induction method for wheat (Triticum aestivum L.). Plant Cell Tiss Org Cult 22:37–41

    Article  Google Scholar 

  • Beattie LD, Garrett RG (1995) Adventitious shoot production from immature embryos of white clover. Plant Cell Tiss Org Cult 42:67–72

    Article  Google Scholar 

  • Bhardwaj AK, Kapoor S, Naryal A, Bhardwaj P, Warghat AR, Kumar B, Chaurasia OP (2016) Effect of various dormancy breaking treatments on seed germination, seedling growth and seed vigour of medicinal plants. Trop Plant Res 3:508–516

    Article  Google Scholar 

  • Chandrasekhar T, Mohammed Hussain T, Rama Gopal G, Srinivasa RJV (2006) Somatic embryogenesis of Tylophora indica (Burm. f.) Merril, an important medicinal plant. Int J Appl Sci Eng 4:33–40

    Google Scholar 

  • Chen J, Wu X, Yao X, Zhu Z, Xu S, Zha D (2016) Exogenous 6-benzylaminopurine confers tolerance to low temperature by amelioration of oxidative damage in eggplant (Solanum melongena L.) seedlings. Rev Bras Bot 39:409–416

    Article  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu CY, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sinica 18:659–668

    Google Scholar 

  • Coleman D, Kawamura A, Ikeuchi M, Favero DS, Lambolez A, Rymen B, Sugimoto K (2020) The SUMO E3 ligase SIZ1 negatively regulates shoot regeneration. Plant Physiol 184:330–344

    Article  CAS  Google Scholar 

  • Colmer TD, Greenway H (2011) Ion transport in seminal and adventitious roots of cereals during O2 deficiency. J Exp Bot 62:39–57

    Article  CAS  Google Scholar 

  • Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42:998–1018

    Article  CAS  Google Scholar 

  • Datta K, Baisakh N, Oliva N, Torrizo L, Abrigo E, Tan J, Datta SK (2003) Bioengineered ‘golden’indica rice cultivars with β-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol J 1:81–90

    Article  CAS  Google Scholar 

  • Deepa AV, Anju M, Dennis Thomas T (2018) The applications of TDZ in medicinal plant tissue culture. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 297–316

    Chapter  Google Scholar 

  • del Rosario C-A, Sarria-Guzmán Y, Martínez-Antonio A (2022) Isoprenoid and aromatic cytokinins in shoot branching. Plant Sci 319:111240

    Article  Google Scholar 

  • Dewir YH, Naidoo Y, Teixeira da Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 37:1451–1470

    Article  CAS  Google Scholar 

  • Dinani ET, Shukla MR, Turi CE, Sullivan JA, Saxena PK (2018) Thidiazuron: modulator of morphogenesis in vitro. In: Ahmad N, Faisal M (eds) Thidiazuron: from urea derivative to plant growth regulator. Springer, Singapore, pp 1–36

    Google Scholar 

  • Dohling S, Kumaria S, Tandon P (2012) Multiple shoot induction from axillary bud cultures of the medicinal orchid, Dendrobium longicornu. AoB Plants. https://doi.org/10.1093/aobpla/pls032

    Article  Google Scholar 

  • Drisya Ravi RS, Siril EA, Nair BR (2019) The effect of silver nitrate on micropropagation of Moringa oleifera Lam. an important vegetable crop of tropics with substantial nutritional value. Physiol Mol Biol Plant 25:1311–1322

    Article  CAS  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trend Plant Sci 23:311–323

    Article  CAS  Google Scholar 

  • Eeckhaut T, Van Houtven W, Bruznican S, Leus L, Van Huylenbroeck J (2020) Somaclonal variation in Chrysanthemum× morifolium protoplast regenerants. Front Plant Sci 11:607171

    Article  Google Scholar 

  • Fehér A (2015) Somatic embryogenesis-stress-induced remodeling of plant cell fate. Biochim Biophys Acta (BBA)- Gene Regul Mech 1849:385–402

    Article  Google Scholar 

  • Frolov KV, Demchenko NP (2008) Anatomical structure, growth and development of coleoptyle and mesocotyle of corn seedlings. In: Fundamental and Applied Problems in Botany at the Beginning of XXI Century: Proc. All-Russ. Conf., Petrozavodsk, September 22–27, pp 237–239

  • Gairi A, Rashid A (2002) In vitro stimulation of shoot-buds on hypocotyls of Linum seedlings; by flooding and etherel treatment of cultures. Plant Sci 163:691–694

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) Direct differentiation of somatic embryos on different regions of intact seedlings of Azadirachta in response to thidiazuron. J Plant Physiol 161:1073–1077

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2004) TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2, 4-D. Plant Cell Tiss Org Cult 76:29–33

    Article  CAS  Google Scholar 

  • Gairi A, Rashid A (2005) Direct differentiation of somatic embryos on cotyledons of Azadirachta indica. Biol Plant 49:169–173

    Article  Google Scholar 

  • Gallo-Meagher M, English RG, Abouzid A (2000) Thidiazuron stimulates shoot regeneration of sugarcane embryogenic callus. In Vitro Cell Dev Biol - Plant 36:37–40

    Article  CAS  Google Scholar 

  • Ganeshan S, Baga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf base/apical meristems of barley (Hordeum vulgare). Plant Cell Tiss Org Cult 73:57–64

    Article  CAS  Google Scholar 

  • Gill R, Saxena PK (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea), promotive role of thidiazuron. Can J Bot 70:1186–1192

    Article  CAS  Google Scholar 

  • Gupta SD, Conger BV (1998) In vitro differentiation of multiple shoot clumps from intact seedlings of switchgrass. In Vitro Cell Dev Biol - Plant 34:196–202

    Article  Google Scholar 

  • Gutaker RM, Groen SC, Bellis ES, Choi JY, Pires IS, Bocinsky RK, Purugganan MD (2020) Genomic history and ecology of the geographic spread of rice. Nat Plants 6:492–502

    Article  Google Scholar 

  • Hattori Y, Nagai K, Ashikari M (2011) Rice growth adapting to deepwater. Curr Opin Plant Biol 14:100–105

    Article  Google Scholar 

  • Huetteman MJ, Preece JE (1993) Thidiazuron, a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33:105–119

    Article  CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott MC, Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910

    Article  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  Google Scholar 

  • Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406

    Article  CAS  Google Scholar 

  • Ikeuchi M, Iwase A, Ito T, Tanaka H, Favero DS, Kawamura A, Sugimoto K (2022) Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiol 188:425–441

    Article  CAS  Google Scholar 

  • Ikeuchi M, Rymen B, Sugimoto K (2020) How do plants transduce wound signals to induce tissue repair and organ regeneration? Curr Opin Plant Biol 57:72–77

    Article  CAS  Google Scholar 

  • Imaseki H (1999) Control of ethylene synthesis and metabolism. In: Hooykas PJJ et al (eds) Biochemistry and Molecular Biology of Plant hormones. Elsevier, The Netherlands, pp 209–245

    Chapter  Google Scholar 

  • Isah T (2016) Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38:1–22

    CAS  Google Scholar 

  • Ivanova M, Van Staden J (2008) Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tiss Org Cult 92:227–231

    Article  CAS  Google Scholar 

  • Jelaska S, Rengel Z, Cesar V (1984) Plant regeneration from mesocotyl callus of Hordeum vulgare L. Plant Cell Rep 3:125–129

    Article  CAS  Google Scholar 

  • Jones M, Yi Z, Murch SJ, Saxena PK (2007) Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26:13–19

    Article  CAS  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  Google Scholar 

  • Kosakivska IV, Vedenicheva NP, Babenko LM, Voytenko LV, Romanenko KO, Vasyuk VA (2021) Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep 49:617–628

    Article  Google Scholar 

  • Kozak D, Parzymies M, Świstowska A, Marcinek B, Ismael BS (2019) The influence of explants type and orientation on growth and development of Mandevilla sanderi (Hemsl.) Woodson in vitro. Acta Sci Pol - Hortorum Cultus 18:111–119

    Article  Google Scholar 

  • Kumar S, Bhat V (2012) High-frequency direct plant regeneration via multiple shoot induction in the apomictic forage grass Cenchrus ciliaris L. In Vitro Cell Dev Biol - Plant 48:241–248

    Article  Google Scholar 

  • Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK, Leelavathi S (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plants Cell Rep 21:635–639

    Article  CAS  Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148

    Article  CAS  Google Scholar 

  • Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415

    Article  CAS  Google Scholar 

  • Lee K, Seo PJ (2018) Dynamic epigenetic changes during plant regeneration. Trend Plant Sci 23:235–247

    Article  CAS  Google Scholar 

  • Li W, Ding CH, Hu Z, Lu W, Guo GQ (2003) Relationship between tissue culture and agronomic traits of spring wheat. Plant Sci 164:1079–1085

    Article  CAS  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  Google Scholar 

  • Ling WT, Liew FC, Lim WY, Subramaniam S, Chew BL (2018) Shoot induction from axillary shoot tip explants of fig (Ficus carica) cv. Japanese BTM 6. Trop Life Sci Res 29:165–174

    Article  Google Scholar 

  • Luan H, Guo B, Pan Y, Lv C, Shen H, Xu R (2018) Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes. Plant Growth Regul 85:399–409

    Article  CAS  Google Scholar 

  • Mangena P, Mokwala PW (2019) The influence of seed viability on the germination and in vitro multiple shoot regeneration of soybean (Glycine max L.). Agriculture. https://doi.org/10.3390/agriculture9020035

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142:33–42

    Article  Google Scholar 

  • Martins JPR, Wawrzyniak MK, Ley-López JM, Kalemba EM, Mendes MM, Chmielarz P (2022) 6-benzylaminopurine and kinetin modulations during in vitro propagation of Quercus robur (L.): an assessment of anatomical, biochemical, and physiological profiling of shoots. Research Square. https://doi.org/10.21203/rs.3.rs-1573274/v1

    Article  Google Scholar 

  • Mok MC, Mok DW (1985) The metabolism of [14C]-tMdiaziiroii in callus tissues of Phaseolus lunatus. Physiol Plant 65:427–432

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2001) Regeneration of shoot-buds on hypocotyls of Linum seedlings, a stress-related response. Plant Sci 161:19–25

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2006) Recalcitrant grain legume Vigna radiata, mung bean, made to regenerate on change of hormonal and cultural conditions. Plant Cell Tiss Org Cult 85:265–270

    Article  Google Scholar 

  • Mundhara R, Rashid A (2006) TDZ-induced triple response and shoot formation on intact seedlings of Linum, putative role of ethylene in regeneration. Plant Sci 170:185–190

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effects on auxin transport in hypocotyls tissues of Pelargonium× hortorum Bailey. Plant Growth Regul 35:269–275

    Article  CAS  Google Scholar 

  • Murthy BNS, Saxena PK (1998) Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss.). Plant Cell Rep 17:469–475

    Article  CAS  Google Scholar 

  • Naaz A, Siddique I, Ahmad A (2021) TDZ-induced efficient micropropagation from juvenile nodal segment of Syzygium cumini (Skill): A Recalcitrant Tree. Propagation and Genetic Manipulation of Plants. Springer, Singapore, pp 163–175

    Chapter  Google Scholar 

  • Nguyen TN, Tuan PA, Mukherjee S, Son S, Ayele BT (2018) Hormonal regulation in adventitious roots and during their emergence under waterlogged conditions in wheat. J Exp Bot 69:4065–4082

    Article  CAS  Google Scholar 

  • Oseni OM, Nailwal TK, Pande V (2022) Callus induction and multiple shoot proliferation from nodal explants of Mansonia altissima: confirmation of genetic stability using ISSR and RAPD markers. In Vitro Cell Dev Biol - Plant 58:479–488

    Article  CAS  Google Scholar 

  • Ovchinnikova VN, Sotchenko VS, Sotchenko YV, Varlamova NV, Rodionova MA, Kharchenko PN (2018) Susceptibility of maize mesocotyl culture to Agrobacterium transformation and its in vitro regeneration. Appl Biochem Microbiol 54:808–815

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotech 23:482–487

    Article  CAS  Google Scholar 

  • Park HY, Kim KS, Ak G, Zengin G, Cziáky Z, Jekő J, Sivanesan I (2021) Establishment of a rapid micropropagation system for Kaempferia parviflora wall Ex Baker: Phytochemical analysis of leaf extracts and evaluation of biological activities. Plants 10:698

    Article  CAS  Google Scholar 

  • Parveen S, Shahzad A (2010) TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol Mol Biol Plant 16:201–206

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onkelen HA, Dudits D, Feher A (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  Google Scholar 

  • Pathi KM, Tuteja N (2013) High-frequency regeneration via multiple shoot induction of an elite recalcitrant cotton (Gossypium hirsutum L cv Narashima) by using embryo apex. Plant Signal Behav 8:22763

    Article  Google Scholar 

  • Pucciariello C, Perata P (2013) Quiescence in rice submergence tolerance: an evolutionary hypothesis. Trend Plant Sci 18:377–381

    Article  CAS  Google Scholar 

  • Puhan P, Siddiq EA (2013) Protocol optimization and evaluation of rice varieties response to in vitro regeneration. Adv Biosci Biotechnol 4:647–653

    Article  Google Scholar 

  • Reeves G, Tripathi A, Singh P, Jones MR, Nanda AK, Musseau C, Hibberd JM (2022) Monocotyledonous plants graft at the embryonic root-shoot interface. Nature 602:280–286

    Article  CAS  Google Scholar 

  • Sanikhani M, Frello S, Serek M (2006) TDZ induces shoot regeneration in various Kalanchoe blossfeldiana Poelln. cultivars in the absence of auxin. Plant Cell Tiss Org Cult 85:75–82

    Article  CAS  Google Scholar 

  • Sarker RH, Das SK, Hoque MI (2012) In vitro flowering and seed formation in lentil (Lens culinaris Medik.). In Vitro Cell Dev Biol - Plant 48:446–452

    Article  Google Scholar 

  • Shan X, Li D, Qu R (2000) Thidiazuron promotes in vitro regeneration of wheat barley. In Vitro Cell Dev Biol - Plant 36:207–210

    Article  CAS  Google Scholar 

  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Karimi M (2010) Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.). In Vitro Cell Dev Biol - Plant 46:274–280

    Article  CAS  Google Scholar 

  • Sharma A, Negi NP, Raina M, Supolia D, Mahajan A, Rajwanshi R, Kumar D (2022) Phytomelatonin: molecular messenger for stress perception and response in plants. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2022.104980

    Article  Google Scholar 

  • Singh J, Tiwari KN (2012) In vitro plant regeneration from decapitated embryonic axes of Clitoria ternatea L.- an important medicinal plant. Ind Crops Prod 35:224–229

    Article  CAS  Google Scholar 

  • Singh R, Srivastava K, Jaiswal HK, Amla DV, Singh BD (2002) High frequency multiple shoot regeneration from decapitated embryo axes of chickpea and establishment of plantlets in the open environment. Biol Plant 45:503–508

    Article  CAS  Google Scholar 

  • Singh V, Chauhan NS, Singh M, Idris A, Madanala R, Pande V, Mohanty CS (2014) Establishment of an efficient and rapid method of multiple shoot regeneration and a comparative phenolics profile in in vitro and greenhouse-grown plants of Psophocarpus tetragonolobus (L.) DC. Plant Signal Behav 9:e970443

  • Soni P, Sinha R, Perret SR (2018) Energy use and efficiency in selected rice- based cropping systems of the Middle-Indo Gangetic Plains in India. Energy Rep 4:554–564

    Article  Google Scholar 

  • Srivastava V, Chaturvedi R (2022) An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana. J Biotechnol 358:76–91

    Article  CAS  Google Scholar 

  • Sun D, Zhang L, Yu Q, Zhang J, Li P, Zhang Y, Song A (2021) Integrated signals of jasmonates, sugars, cytokinins and auxin influence the initial growth of the second buds of chrysanthemum after decapitation. Biology 10:440

    Article  CAS  Google Scholar 

  • Talukdar M, Swain DK, Bhadoria PBS (2022) Effect of IAA and BAP application in varying concentration on seed yield and oil quality of Guizotia abyssinica (L) Cass. Ann Agric Sci 67:15–23

    Article  Google Scholar 

  • Thomas JC, Katterman FR (1986) Cytokinin-activity induced by thidiazuron. Plant Physiol 81:681–683

    Article  CAS  Google Scholar 

  • Thorpe TA (2007) History of plant tissue culture. Mol Biotechnol 37:169–180

    Article  CAS  Google Scholar 

  • Timofeeva SN, Elkonin LA, Yudakova OI, Tyrnov VS (2016) Application of tissue culture for Laburnum anagyroides Medik. propagation. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. Springer, Singapore, pp 135–159

    Chapter  Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tiss Org Cult 66:9–16

    Article  CAS  Google Scholar 

  • Tong C, Hill CB, Zhou G, Zhang XQ, Jia Y, Li C (2021) Opportunities for improving waterlogging tolerance in cereal crops-physiological traits and genetic mechanisms. Plants 10:1560

    Article  CAS  Google Scholar 

  • Traore A, Maximova SN, Guiltinan MJ (2003) Micropropagation of Theobroma cacao L. using somatic embryo-derived plants. In Vitro Cell Dev Biol - Plant 39:332–337

    Article  CAS  Google Scholar 

  • Umeda M, Ikeuchi M, Ishikawa M, Ito T, Nishihama R, Kyozuka J, Sakakibara H (2021) Plant stem cell research is uncovering the secrets of longevity and persistent growth. Plant J 106:326–335

    Article  CAS  Google Scholar 

  • Verdus MC, Thellier M, Ripoll C (1997) Storage of environmental signals in flax, their morphogenetic effect as enabled by a transient depletion of calcium. Plant J 12:1399–1410

    Article  CAS  Google Scholar 

  • Vikrant RA (2002) Induction of multiple shoots by thidiazuron from caryopsis cultures of minor millet (Paspalum scrobiculatum L.) and its effect on the regeneration of embryogenic callus cultures. Plant Cell Rep 21:9–13

    Article  CAS  Google Scholar 

  • Vikrant RA (2003) Somatic embryogenesis from mesocotyl and leaf-base segments of Paspalum scrobiculatum L., minor millet. In Vitro Cell Dev Biol - Plant 39:485–489

    Article  Google Scholar 

  • Wybouw B, De Rybel B (2019) Cytokinin- a developing story. Trend Plant Sci 24:177–185

    Article  CAS  Google Scholar 

  • Yamamoto F, Iwanaga F, Al-Busaidi A, Yamanaka N (2020) Roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra Flueck. trees. Sci Rep 10:1–10

    Article  Google Scholar 

  • Yeung E, Bailey-Serres J, Sasidharan R (2019) After the deluge: plant revival post-flooding. Trend Plant Sci 24:443–454

    Article  CAS  Google Scholar 

  • Yip WK, Yang SF (1986) Effect of thidiazuron, a cytokinin-active urea derivative, in cytokinin dependent ethylene production system. Plant Physiol 80:515–519

    Article  CAS  Google Scholar 

  • Zhang CR, Huang XL, Wu JY, Feng BH, Chen YF (2006) Identification of thidiazuron-induced ESTs expressed differentially during callus differentiation of alfalfa (Medicago sativa). Physiol Plant 128:732–739

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Swapan K. Datta of IRRI, Manila, Philippines, for the determination of β-carotene in rice caryopses sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparna Nautiyal (nee Gairi).

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 818 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nautiyal (nee Gairi), A., Rashid, A. & Agnihotri, A. Induction of multiple shoots in Oryza sativa: roles of thidiazuron, 6-benzylaminopurine, decapitation, flooding, and Ethrel® treatments. In Vitro Cell.Dev.Biol.-Plant 58, 1126–1137 (2022). https://doi.org/10.1007/s11627-022-10316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-022-10316-2

Keywords

Navigation