Skip to main content

Advertisement

Log in

Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Abiotic stresses, among which extreme temperatures, salinity, drought, UV radiation, heavy metal pollution, etc., adversely affect the growth and yield of cereals, the most important group of monocotyledonous plants that have met the nutritional and other needs of mankind for thousands of years. To cope with stress, plants deploy certain adaptive strategies that combine morphological, physiological, and biochemical responses, and on which growth and productivity depend. An important place in the formation of such strategies is occupied by phytohormones – signaling biomolecules of a different chemical structure and physicochemical properties, which act in nanomolar concentrations and regulate most physiological and metabolic processes of plants. In this review, the latest literature data concerning the growth and development regulation by exogenous phytohormones in cereals under abiotic stresses have been analyzed and summarized. The effects of priming and foliar treatment with abscisic acid, gibberellins, auxins, cytokinins, brassinosteroids, jasmonic and salicylic acids on the cultivated cereals tolerance to different abiotic stressors are discussed. Peculiarities of bilateral and multilateral hormonal signaling in the formation of responses of cultivated cereals to abiotic stressors after application of exogenous phytohormones are considered. The issue of exogenous phytohormones effects on molecular mechanisms controlling the synthesis of endogenous hormones, their signaling and activity are singled out. It is emphasized that phytohormonal engineering opens new opportunities to increase yields and is seen as an important promising approach to overcoming the cereal losses caused by adverse external factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kajla M, Yadav VK, Khokhar J, Singh S, Chhokar RS, Meena RP, Sharma RK (2015) Increase in wheat production through management of abiotic stresses: a review. J Appl Nat Sci 7(2):1070–1080

    Article  CAS  Google Scholar 

  2. Liu J, Moore S, Chen C, Lindsey K (2017) Crosstalk complexities between auxin, cytokinin and ethylene in Arabidopsis root development: from experiments to systems modeling and back again. Mol Plant 10(12):1480–1496. https://doi.org/10.1016/j.molp.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  3. Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:537. https://doi.org/10.3389/fpls.2017.00537

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: A global perspective. Front Plant Sci 7:2049. https://doi.org/10.3389/fpls.2016.02049

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rhaman MS, Imran S, Rauf F, Baskin CC (2021) Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants 10(1):37. https://doi.org/10.3390/plants10010037

    Article  CAS  Google Scholar 

  6. Muhie SH (2018) Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Adv Crop Sci Tech 6(6):403. https://doi.org/10.4172/2329-8863.1000403

    Article  Google Scholar 

  7. Ali H, Iqbal N, Shahzad AN, Sarwar N, Ahmad S, Mehmood A (2013) Seed priming improves irrigation water use efficiency, yield, and yield components of late-sown wheat under limited water conditions. Turk J Agric Forestry 37:534–544. https://doi.org/10.3906/tar-1207-70

    Article  Google Scholar 

  8. Eisvand HR, Tavakkol-Afshari R, Sharifzadeh F, Maddah AH, Hesamzadeh HSM (2010) Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci Technol 38:280–297. https://doi.org/10.15258/sst.2010.38.2.02

    Article  Google Scholar 

  9. Jisha KC, Vijayakumari K, Puthur JT (2012) Seed priming for abiotic stress tolerance: an overview. Acta Physiol Plant 35:1381–1396. https://doi.org/10.1007/s11738-012-1186-5

    Article  Google Scholar 

  10. Cai T, Meng X, Liu X, Liu T, Wang H, Jia Z, Yang D, Ren X (2018) Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Front Plant Sci 9:1886. https://doi.org/10.3389/fpls.2018.01886

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weijers D, Nemhauser J, Yang Z (2018) Auxin: small molecule, big impact. J Exp Bot 69(2):133–136. https://doi.org/10.1093/jxb/erx463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K-I, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. PNAS USA 108:18512–18517. https://doi.org/10.1073/pnas.1108434108

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hanaa H, Safaa A (2019) Foliar application of IAA at different growth stages and their influenced on growth and productivity of bread Wheat (Triticum aestivum L.). J Phys: Conf Ser 1294:1–8. https://doi.org/10.1088/1742-6596/1294/9/092029

    Article  CAS  Google Scholar 

  14. Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indole acetic acid (IAA) and inorganic nutrients – A field trial. Aust J Crop Sci 7(2):249–254. https://doi.org/10.3316/informit.260789621744643

    Article  CAS  Google Scholar 

  15. Gupta B, Joshi R, Pareek A, Singla-Pareek SL, Pandey GK (2017) Mechanism of Plant Hormone Signaling Under Stress, 1104p. John Wiley & Sons, Inc., Hoboken. https://doi.org/10.1002/9781118889022.ch36

    Book  Google Scholar 

  16. Sharma L, Dalal M, Verma RK, Kumar SVV, Yadav SK, Pushkar S, Kushwaha SR, Bhowmik A, Chinnusamy V (2018) Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environ Exper Bot 150:9–24. https://doi.org/10.1016/j.envexpbot.2018.02.013

    Article  CAS  Google Scholar 

  17. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. PNAS USA 107:8569–8574. https://doi.org/10.1073/pnas.1000869107

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akbari G, Sanavy SAMM, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10(15):2557–2561. https://doi.org/10.3923/pjbs.2007.2557.2561

    Article  CAS  PubMed  Google Scholar 

  19. Iqbal M, Ashraf M (2007) Seed treatment with auxins modulates growth and ion partitioning in salt-stressed wheat plants. J Integr Plant Biol 49(7):1003–1015. https://doi.org/10.1111/j.1672-9072.2007.00488.x

    Article  CAS  Google Scholar 

  20. Sponsel VM, Hedden P (2010) Gibberellin Biosynthesis and Inactivation. In: Davies PJ (ed) Plant Hormones. Springer, Dordrecht, pp 63–94. https://doi.org/10.1007/978-1-4020-2686-7_4

    Chapter  Google Scholar 

  21. Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75. https://doi.org/10.1242/jeb.089938

    Article  CAS  PubMed  Google Scholar 

  22. Abido WAE, Allem A, Zsombik L, Attila N (2019) Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J Biol Sci 12(1):51–60. https://doi.org/10.3923/ajbs.2019.51.60

    Article  CAS  Google Scholar 

  23. Tsegay BA, Andargie M (2018) Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L. J Crop Sci Biotechnol 21(3):261-267. https://doi.org/10.1007/s12892-018-0043-0

  24. Ansari O, Azadi MS, Sharif-Zadeh F, Younesi E (2013) Effect of Hormone Priming on Germination Characteristics and Enzyme Activity of Mountain Rye (Secale montanum) Seeds under Drought Stress Conditions. J Stress Physiol Biochem 9(3):61–71

    Google Scholar 

  25. Siddiqui MH, Al-Whaibi MH, Basalah MO (2010) Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma 248(3):503–511. https://doi.org/10.1007/s00709-010-0197-6

    Article  CAS  PubMed  Google Scholar 

  26. Amri B, Khamassi K, Ali MB, Teixeira da Silva JA, Kaab LBB (2016) Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. South. Afr J Bot 106:35–40. https://doi.org/10.1016/j.sajb.2016.05.007

    Article  CAS  Google Scholar 

  27. Coelho Filho MA, Colebrook EH, Lloyd DPA, Webster CP, Mooney SJ, Phillips AL, Hedden P, Whalley WR (2013) The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat. Plant Soil 371:81–94. https://doi.org/10.1007/s11104-013-1662-8

    Article  CAS  Google Scholar 

  28. Krugman T, Peleg Z, Quansah L, Chagu V, Korol AB, Nevo E, Saranga Y, Fait A, Chalhoub B, Fahima T (2011) Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct Int Genom 11:565–583. https://doi.org/10.1007/s10142-011-0231-6

    Article  CAS  Google Scholar 

  29. Kaya C, Tuna AL, Alves A (2006) Gibberellic acid improves water deficit tolerance in maize plants. Acta Physiol Plant 28(4):331–337. https://doi.org/10.1007/s11738-006-0029-7

    Article  CAS  Google Scholar 

  30. Moumita, Mahmud JA, Biswas PK, Nahar K, Fujita M, Hasanuzzaman M (2019) Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobot 72(2):1776. https://doi.org/10.5586/aa.1776

    Article  Google Scholar 

  31. Amal ME, Heba IM (2014) The effect of the exogenous gibberellic acid on two salt stressed barley cultivars. Europ Sci J 10(6):1857–1881. https://doi.org/10.19044/esj.2014.v10n6p%25p

    Article  Google Scholar 

  32. Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62(1):1–9. https://doi.org/10.1016/j.envexpbot.2007.06.007

    Article  CAS  Google Scholar 

  33. Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K (2014) Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice. Plant Physiol 164(4):2011–2019. https://doi.org/10.1016/j.envexpbot.2018.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barba-Espín G, Dedvisitsakul P, Hägglund P, Svensson B, Finnie C (2014) Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress. Plant Physiol 164:951–965. https://doi.org/10.1104/pp.113.233163

    Article  CAS  PubMed  Google Scholar 

  35. Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019) Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42:998–1018. https://doi.org/10.1111/pce.13494

    Article  CAS  PubMed  Google Scholar 

  36. Ali Q, Shahid S, Nazar N, Hussain AI, Ali S, Chatha SAS, Hussain SM (2020) Use of phytohormones in conferring tolerance to environmental stress. In: Hasanuzzaman M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. Pp. 245-355. https://doi.org/10.1007/978-981-15-2172-0_11

  37. Iqbal M, Basra S, Jamil A (2006) Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. J Plant Growth Regul 50:29–39. https://doi.org/10.1007/s10725-006-9123-5

    Article  CAS  Google Scholar 

  38. Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. J Plant Growth Regul 65:305–313. https://doi.org/10.1007/s10725-011-9602-1

    Article  CAS  Google Scholar 

  39. Ma X, Zhang J, Huang B (2016) Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ Exp Bot 125:1–11. https://doi.org/10.1016/j.envexpbot.2016.01.002ï

    Article  CAS  Google Scholar 

  40. Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24:239–249. https://doi.org/10.1007/s12298-018-0512-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al-Mishhadani II, Ismail EN, Jaddoa KA, Majeed DM, Mohammed OA (2015) Estimation of the interaction effect between salinity and growth regulators on salt tolerance of two bread wheat cultivars. Int J Appl Agricult Sci 1(4):95–101. https://doi.org/10.11648/j.ijaas.20150104.12

    Article  Google Scholar 

  42. Nimir NEA, Lu S, Zhou G, Guo W, Ma B, Wang Y (2015) Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses. Crop Pasture Sci 66(2):145–157. https://doi.org/10.1071/CP14141

    Article  CAS  Google Scholar 

  43. Zaheer MS, Raza MAS, Saleem MF, Erinle KO, Iqbal R, Ahmad S (2019) Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Commun Soil Sci Plant Anal 50(20):2521–2533. https://doi.org/10.1080/00103624.2019.1667376

    Article  CAS  Google Scholar 

  44. Raza M, Zaheer MS, Farrukh M, Saleem, Khan I, Ahmad S, Iqbal R (2020) Drought ameliorating effect of exogenous applied cytokinin in wheat. Pak J Agri Sci 57 (3): 725–733. https://doi.org/10.21162/PAKJAS/20.8183

    Article  Google Scholar 

  45. Chang Z, Liu Y, Dong H, Teng K, Han L, Zhang X (2016) Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PLoS One 11(4):e0154005. https://doi.org/10.1371/journal.pone.0154005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang L, Yan Y, Lu W, Lu D (2020) Application of exogenous phytohormones at silking stage improve grain quality under post-silking drought stress in waxy maize. Plants (Basel Switzerland) 10(1):48. https://doi.org/10.3390/plants10010048

    Article  CAS  Google Scholar 

  47. Akter N, Islam MR, Karim MA, Hossain T (2014) Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. J Crop Sci Biotechnol 17:41–48. https://doi.org/10.1007/s12892-013-0117-3

    Article  Google Scholar 

  48. Sarafraz-Ardakani MR, Khavari-Nejad RA, Moradi F, Najafi F (2014) Abscisic acid and cytokinin-induced osmotic and antioxidant regulation in two drought-tolerant and drought-sensitive cultivars of wheat during grain filling under water deficit in field conditions. Not Sci Biol 6(3):354–362. https://doi.org/10.15835/nsb.6.3.9301

    Article  Google Scholar 

  49. Gujjar RS, Banyen P, Chuekong W, Worakan P, Roytrakul S, Supaibulwatana K (2020) A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants (Basel Switzerland) 9(9):1106. https://doi.org/10.3390/plants9091106

    Article  CAS  Google Scholar 

  50. Yang D, Li Y, Shi Y, Cui Z, Luo Y, Zheng M, Chen J, Yin LYa, Wang Y Z (2016) Exogenous cytokinins increase grain yield of winter cultivars by improving stay-green characteristics under heat stress. PLoS One 11(5):e0155437. https://doi.org/10.1371/journal.pone.0155437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu C, Cui K, Wang W, Li Q, Fahad S, Hu Q, Huang J, Nie L, Peng S (2016) Heat-induced phytohormone changes are associated with disrupted early reproductive development and reduced yield in rice. Sci Rep 6:34978. https://doi.org/10.1038/srep34978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bakhtavar MA, Afzal I, Basra SMA, Ahmad A-u-H, Noor MA (2015) Physiological strategies to improve the performance of spring maize (Zea mays L.) planted under early and optimum sowing conditions. PLoS ONE 10(4):e0124441. https://doi.org/10.1371/journal.pone.0124441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bryksová M, Hybenová A, Hernándiz E, Novák O, Pěnčík A, Spíchal L, De Diego N, Doležal K (2020) Hormopriming to mitigate abiotic stress effects: a case study of N9-substituted cytokinin derivatives with a fluorinated carbohydrate moiety. Front Plant Sci 11:1941. https://doi.org/10.3389/fpls.2020.599228

    Article  Google Scholar 

  54. Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Front Plant Sci 20(8):161. https://doi.org/10.3389/fpls.2017.00161

    Article  Google Scholar 

  55. Yang D, Luo Y, Ni Y, Yin Y, Yang W, Peng D, Cui Z, Wang Z (2014) Effects of exogenous ABA application on post-anthesis dry matter redistribution and grain starch accumulation of winter wheat with different staygreen characteristics. Crop J 2:144–153. https://doi.org/10.1016/j.cj.2014.02.004

    Article  Google Scholar 

  56. Li G, Zhang C, Zhang G, Fu W, Feng B, Chen T, Peng S, Tao L (2020) Abscisic Acid Negatively Modulates Heat Tolerance in Rolled Leaf Rice by Increasing Leaf Temperature and Regulating Energy Homeostasis. Rice 13:18. https://doi.org/10.1186/s12284-020-00379-3

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gurmani AR, Bano A, Khan SU, Din J, Zhang J (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (‘Oryza sativa’ L.). Aust J Crop Sci 5(10):1278–1285. http://www.cropj.com/zhang_5_10_2011_1278_1285.pdf

    CAS  Google Scholar 

  58. Wang Z, Li X, Zhu X, Liu S, Song F, Liu F, Wang Y, Qi X, Wang F, Zuo Z, Duan P, Yang A, Cai J, Jiang D (2017) Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat. Plant Soil Environ 63:307–314. https://doi.org/10.17221/287/2017-PSE

    Article  CAS  Google Scholar 

  59. Gurmani AR, Bano A, Ullah N, Khan H, Jahangir M, Flowers TJ (2013) Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and by pass flow in rice (Oryza sativa indica). Aust J Crop Sci 7(9):1219–1226. http://www.cropj.com/gurmani_7_9_2013_1219_1226.pdf

    Google Scholar 

  60. Li XJ, Yang MF, Chen H, Qu LQ, Chen F, Shen SH (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta 1804(4):929–940. https://doi.org/10.1016/j.bbapap.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  61. Pál M, Tajti J, Szalai G, Peeva V, Vegh B, Janda T (2018) Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Sci Rep 8(1):12839. https://doi.org/10.1038/s41598-018-31297-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2010) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exper Bot 86:94–105. https://doi.org/10.1016/j.envexpbot.2010.01.009

    Article  CAS  Google Scholar 

  63. Liu X-L, Zhang H, Jin Y-Y, Wang M-M, Yang H-Y, Ma H-Y, Jiang C-J, Liang ZW (2019) Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 438:39–55. https://doi.org/10.1007/s11104-019-03992-4

    Article  CAS  Google Scholar 

  64. Wei LX, Lv BS, Wang MM, Ma HY, Yang HY, Liu XL, Jiang CJ, Liang ZW (2015) Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol Biochem 90:50–57. https://doi.org/10.1016/j.plaphy.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  65. Jiang M, Zhang J (2002) Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radical Res 36(9):1001–1015. https://doi.org/10.1080/1071576021000006563

    Article  CAS  Google Scholar 

  66. Wei L, Wang L, Yang Y, Wang P, Guo T, Kang G (2015) Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Front Plant Sci 30(6):458. https://doi.org/10.3389/fpls.2015.00458

    Article  Google Scholar 

  67. Zhang L, Gao M, Hu J, Zhang X, Wang K, Ashraf M (2012) Modulation Role of Abscisic Acid (ABA) on Growth, Water Relations and Glycinebetaine Metabolism in Two Maize (Zea mays L.) Cultivars under Drought Stress. Int J Mol Sci 13(3):3189–3202. https://doi.org/10.3390/ijms13033189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khan SU, Bano A, Ud-Din JU, Gurmani AR (2012) Abscisic acid and salicylic acid seed treatment as potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pak J Bot 44(1):44. https://www.cabdirect.org/cabdirect/abstract/20123182772 43–49.

    Google Scholar 

  69. Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:39865. https://doi.org/10.1038/srep39865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raza A, Mehmood SS, Tabassum J, Batool R (2019) Targeting Plant Hormones to Develop Abiotic Stress Resistance in Wheat. In: Hasanuzzaman M, Nahar K, Hossain M (ed) Wheat Production in Changing Environments. Springer, Singapore, pp 557–579. https://doi.org/10.1007/978-981-13-6883-7_22

    Chapter  Google Scholar 

  71. Ma C, Wang ZQ, Zhang LT, Sun MM, Lin TB (2014) Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica 52:377–385. https://doi.org/10.1007/s11099-014-0041-x

    Article  CAS  Google Scholar 

  72. Liu X, Chi H, Yue M, Li W, Jia E (2012) The Regulation of Exogenous Jasmonic Acid on UV-B Stress Tolerance in Wheat. J Plant Growth Regul 31, 436–447 (2012). https://doi.org/10.1007/s00344-011-9253-5

  73. Bertini L, Palazzi L, Proietti S, Pollastri S, Arrigoni G, Polverino de Laureto P, Caruso C (2019) Proteomic Analysis of MeJa-Induced Defense Responses in Rice against Wounding. Int J Mol Sci 20:2525. https://doi.org/10.3390/ijms20102525

    Article  CAS  PubMed Central  Google Scholar 

  74. Mousavi S, Niknejad Y, Fallah H, Tari DB (2020) Methyl jasmonate alleviates arsenic toxicity in rice. Plant Cell Rep 39:1041–1060. https://doi.org/10.1007/s00299-020-02547-7

    Article  CAS  PubMed  Google Scholar 

  75. Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N (2017) Salicylic acid to decrease plant stress. Environ Chem Lett 15:101–123. https://doi.org/10.1007/s10311-016-0584-0

    Article  CAS  Google Scholar 

  76. Gondor OK, Janda T, Soós V, Pál M, Majláth I, Adak MK. Balázs E, Szalai G (2016) Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Front Plan Sci 7:1447. https://doi.org/10.3389/fpls.2016.01447

    Article  Google Scholar 

  77. Mostofa MG, Rahman M, Ansary M, Uddin M, Fujita M, Tran L-SP (2019) Interactive effects of salicylic acid and nitric oxide in enhancing rice tolerance to cadmium stress. Int J Mol Sci 20(22):5798. https://doi.org/10.3390/ijms20225798

    Article  CAS  PubMed Central  Google Scholar 

  78. Tahjib-Ul-Arif M, Siddiqui MN, Sohag AAM, Sakil MA, Rahman MM, Polash MAS, Mostofa MG, Tran L-SP (2018) Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J Plant Growth Regul 37:1318–1330. https://doi.org/10.1007/s00344-018-9867-y

    Article  CAS  Google Scholar 

  79. Taşgín E, Atící O, Nalbantoğlu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. J Plant Growth Regul 41:231–236. https://doi.org/10.1023/B:GROW.0000007504.41476.c2

    Article  Google Scholar 

  80. Sahu GK, Kar M, Sabat SC (2008) Electron transport activities of isolated thylakoids from wheat plants grown in salicylic acid. Plant Biol 4:321–328. https://doi.org/10.1055/s-2002-32336

    Article  Google Scholar 

  81. Chen YE, Cui JM, Li GX, Yuan M, Zhang ZW, Yuan S, Zhang HY (2016) Effect of salycilic acid on the antioxidant system and photosystem II in wheat seedlings. Biol Plant 60:139–147. https://doi.org/10.1007/s10535-015-0564-4

    Article  CAS  Google Scholar 

  82. Wei Z, Li J (2020) Regulation of brassinosteroid homeostasis in higher plants. Front. Plant Sci 11:583622. https://doi.org/10.3389/fpls.2020.583622

    Article  Google Scholar 

  83. Agami RA (2013) Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South Afr J Bot 88:171–177. https://doi.org/10.1016/j.sajb.2013.07.019

    Article  CAS  Google Scholar 

  84. Sharma I, Ching E, Saini S, Bhardwaj R, Pati PK (2013) Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol Biochem 69:17–26. https://doi.org/10.1016/j.plaphy.2013.04.013

    Article  CAS  PubMed  Google Scholar 

  85. Shahbaz M, Ashraf M, Athar H (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? J Plant Growth Regul 55:51–64. https://doi.org/10.1007/s10725-008-9262-y

    Article  CAS  Google Scholar 

  86. Janeczko A, Biesaga-Kościelniak J, Oklešťková J, Filek M, Dziurka M, SzarekŁukaszewska G, Kościelniak J (2010) Role of 24-epibrassinolide in wheat production: Physiological effects and uptake. J Agron Crop Sci 196:311–321. https://doi.org/10.1111/j.1439-037X.2009.00413.x

    Article  CAS  Google Scholar 

  87. Vayner AO, Kolupaeuv YE, Shvidenko NV, Khripach VA (2014) The protective effect of brassinosteroids on millet plants under abiotic stresses. Biotechnol Acta 7(5):77–84. https://doi.org/10.15407/biotech7.05.077

    Article  CAS  Google Scholar 

  88. Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-Arree W, Pankean P, Suksamrarn A (2015) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53:312–320. https://doi.org/10.1007/s11099-015-0106-5

    Article  CAS  Google Scholar 

  89. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9. https://doi.org/10.1016/j.envexpbot.2015.08.005

    Article  CAS  Google Scholar 

  90. Helmy MY, Hansson M (2019) Crosstalk among hormones in barley spike contributes to the yield. Plant Cell Rep 38:1013–1016. https://doi.org/10.1007/s00299-019-02430-0

    Article  CAS  Google Scholar 

  91. Avalbaev A, Yuldashev R, Fedorova K, Somov K, Vysotskaya L, Allagulova C, Shakirova F (2016) Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. Russ J Plant Physiol 191:101–110. https://doi.org/10.1016/j.jplph.2015.11.013

    Article  CAS  Google Scholar 

  92. Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, Waligórski P, Juzoń K, Cyganek K, Grzesiak S (2013) Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings. Int J Mol Sci 14:13171–13193. https://doi.org/10.3390/ijms140713171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, Xiao L-T, Sun TP, Li J, Deng X-W, Lee CM, Tomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. PNAS USA 109:E1192–E1120. https://doi.org/10.1073/pnas.1201616109

    Article  PubMed  PubMed Central  Google Scholar 

  94. Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Zheng RBB (2019) Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 9:1–36. https://doi.org/10.3390/biom9070285

    Article  CAS  Google Scholar 

  95. Chen L, Zhao J, Song J, Jameson PE (2020) Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J 18:614–630. https://doi.org/10.1111/pbi.13305

    Article  CAS  PubMed  Google Scholar 

  96. Ramireddy E, Hosseini SA, Eggert K, Gillandt S, Gnad H, Von Wirén N, Schmülling T (2018) Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol 177(3):1078–1095. https://doi.org/10.1104/pp.18.00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2018) Knockdown of an inflorescence meristem-specific cytokinin oxidase – OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ 41(5):936–946. https://doi.org/10.1111/pce.12947

    Article  CAS  PubMed  Google Scholar 

  98. Merewitz Y, Xu Y, Huang В (2016) Differentially Expressed Genes Associated with Improved Drought Tolerance in Creeping Bentgrass Overexpressing a Gene for Cytokinin Biosynthesis. PLoS One 11(11):e0166676. https://doi.org/10.1371/journal.pone.0166676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Décima Oneto C, Otegui ME, Baroli I, Beznec A, Faccio P, Bossio E, Blumwald E, Lewi D (2016) Water deficit stress tolerance in maize conferred by expression of an isopentenyltransferase (IPT) gene driven by a stress-and maturation-induced promoter. J Biotech 220:66–77. https://doi.org/10.1016/j.jbiotec.2016.01.014

    Article  CAS  Google Scholar 

  100. Xu Y, Gianfagna T, Huang B (2010) Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. J Exp Bot 61(12):3273–3289. https://doi.org/10.1093/jxb/erq149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khan N, Bano A, Ali S, Babar MA (2020) Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90:189–203. https://doi.org/10.1007/s10725-020-00571-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authrs are grateful to Mykola M. Shcherbatiuk (Senior Researcher of the Department of Phytohormonology of the M.G. Kholodny Institute of Botany) for design of the figures.

Funding

This work was funded by the National Academy of Sciences of Ukraine whithin the framework of a project № ІІІ-90-19.463 «Hormonal regulation of growth and development of cereals under negative climatic factors».

Author information

Authors and Affiliations

Authors

Contributions

IVK wrote abstract, introduction and portion related to crosstalk, NPV wrote portion related to cytokinins, crosstalk and conclusion, LMB wrote portion related to gibberellins, jasmonic and salicylic acids, LVV wrote portions related to IAA and ABA, KOR wrote portion related to brassinosteroids, VAV wrote portion related to gibberellins. All authors read and approved the manuscript.

Corresponding author

Correspondence to Nina P. Vedenicheva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosakivska, I.V., Vedenicheva, N.P., Babenko, L.M. et al. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep 49, 617–628 (2022). https://doi.org/10.1007/s11033-021-06802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06802-2

Keywords

Navigation