Skip to main content

TDZ-Induced Efficient Micropropagation from Juvenile Nodal Segment of Syzygium cumini (Skill): A Recalcitrant Tree

  • Chapter
  • First Online:
Propagation and Genetic Manipulation of Plants

Abstract

An assessment was carried out to examine the TDZ (a potential cytokinin) efficacy in the induction of multiple shoot regeneration in Syzygium cumini from juvenile nodal (N) explants and cotyledonary node (CN) explants. TDZ in different concentration was used as a supplement to the MS basal media. Two factors viz. concentration and exposure duration to TDZ have multifaceted effect on multiple shoot induction and regeneration. Continuous presence of culture in TDZ inhibited shoot elongation and even leads to shoot fasciation. On transferring the TDZ exposed shoot clumps (4 weeks old) on hormone-free medium increased multiple shoot regeneration by threefold. Best TDZ concentration was recorded to be 5.0 μM in nodal explants while 2.5 in cotyledonary node explant. Maximum percentage response in CN explant was 75% with maximum mean shoot numbers (4.9 ± 0.67) and mean shoot length (2.90 ± 0.23 cm) while highest percent response was observed as 79% with maximum shoot numbers (4.17 ± 0.81) and maximum shoot length (2.87 ± 0.23 cm) in juvenile nodal (N) explants. The shoot clumps from CN (2.5 μM, TDZ) and juvenile nodal (5.0 μM, TDZ) when transferred onto secondary medium (hormone-free basal medium) produced mean shoot length (4.27 ± 0.34 cm) and (4.56 ± 0.35 cm) whereas mean shoot numbers noted to be (16.23 ± 0.21) and (18.34 ± 0.35), respectively. These shoot cultures are free from any discrepancy. Well-developed shootlet (3.0 cm) was successfully rooted in vitro in MS ½ and IBA with highest percent response in CN and juvenile nodal recorded to be 83% and 82% with mean root numbers (6.33 ± 0.10) and (5.99 ± 0.11) respectively and mean root length (7.19 ± 0.21 cm) and (6.79 ± 0.25 cm). The survival rate of transferred plant was nearly 70%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed R, Anis M (2014) Role of TDZ in the quick regeneration of multiple shoots from nodal explant of Vitex trifolia L.—an important medicinal plant. Appl Biochem Biotechnol 168:957–966

    Article  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    Article  CAS  Google Scholar 

  • Davies FT, Lazarte JE Jr, Joiner JN (1982) Initiation and development of roots in juvenile and mature leaf bud cuttings of Ficus pumila L. Am J Bot 69:804–811

    Article  Google Scholar 

  • Dent TV (1948) Seed storage with particular reference to the storage of seeds of Indian Forest plants. Indian Forest Research (N.S.). Silviculture 7:1–124

    Google Scholar 

  • Dewir YH, Nurmansyah NY, Teixeira da Silva JA (2018) Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep 7:1451–1470. https://doi.org/10.1007/s00299-018-2326-1

    Article  CAS  Google Scholar 

  • Faisal M, Ahmad N, Anis M (2005) Shoot multiplication in Rauvolfia tetraphylla L. using thidiazuron. Plant Cell Tissue Organ Cult 80:187–190

    Article  CAS  Google Scholar 

  • Hare PD, Van Staden J (1994) Inhibitory effect of TDZ on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol 35:1121–1125

    Article  CAS  Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Org Cult 33:105–119

    Article  CAS  Google Scholar 

  • Hussain TM, Chanrashekher T, Gopal GR (2008) Micropropagation of Sterculia urens Roxb an endangered tree species from intact seedling. Afr J Biotechnol 7:95–101

    CAS  Google Scholar 

  • Khan I, Anis M (2012) Modulation of in vitro morphogenesis in nodal segments of Salix tetrasperma Roxb. through the use of TDZ, different media types and culture regimes. Agrofor Syst 86:95–103

    Google Scholar 

  • Laloue M, Fox JE (1989) Cytokinin oxidase from wheat. Plant Physiol 90:899–906

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1981) Commercially feasible micropropagation of mountain laurel, Kalmea latifolia, by the use of shoot tip culture. Int Plant Propagat Soc 30:421–427

    Google Scholar 

  • Mok MC, Mok DWS, Armstong DJ, Shudo K, Isogai Y, Okamoto T (1982) Cytokinin activity of N-phenyl-N’-1, 2, 3-thidiazol-5-ylurea (thidizuron). Phytochemistry 21:1509–1511

    Article  CAS  Google Scholar 

  • Mok MC, Mok D, Turner J, Mujer C (1987) Biological and biochemical effects of cytokinin-active phenylurea derivatives in tissue culture systems. In: chemical regulation in tissue culture: an overview. Hortic Sci 22:1194–1197

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2001) Molecular fate of thidiazuron and its effect on auxin transport in hypocotyls tissues of Pelargonium hortorum bailey. Plant Growth Regul 35:269–275

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena P (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Develop Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Naaz A, Altaf S, Naz R, Anis M, Alatar AR (2019) Successful plant regeneration system via de novo organogenesis in Syzygium cumini (L.) Skeels: an important medicinal tree. Agrofor Syst 93:1285–1295. https://doi.org/10.1007/s10457-018-0236-4

    Article  Google Scholar 

  • Naaz A, Shahzad A and Anis M (2014) Effect of Adenine Sulphate Interaction on Growth and Development of Shoot Regeneration and Inhibition of Shoot Tip Necrosis Under In Vitro Condition in Adult Syzygium cumini L.—a Multipurpose Tree. Appl Biochem Biotechnol.173:90–102

    Google Scholar 

  • Neuman MC, Preece JE, Van Sambreek JW, Gaffney GR (1993) Somatic embyogenesis and callus production from cotyledon explants of black walnut (Juglans nigra L.). Plant Cell Tissue Org Cult 32:9–18

    Article  CAS  Google Scholar 

  • Perveen S, Anis M (2015) Physiological and biochemical parameters influencing ex vitro establishment of the in vitro regenerants of Albizia lebbeck (L.) Benth.: an important soil reclaiming plantation tree. Agrofor Syst 89:721–733

    Google Scholar 

  • Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497

    Article  Google Scholar 

  • Ramashree AB, Varghese TT, Raghu AV, Nabeese NN (2007) Micropropagation of Syzygium cumini skeels. A multipurpose tree. Res J Bot 2:208–213

    Article  Google Scholar 

  • Rashotte AM, Poupart J, Waddell CS, Muday GK (2003) Transport of the two natural auxins, indole-3-butyric acid and indole-3- acetic acid, in Arabidopsis. Plant Physiol 133:761–772

    Article  CAS  Google Scholar 

  • Ravikumar BVV, Patnaik AK, Kumar RS, Rao NN (2012) A RP-HPLC method development and validation for the estimation of montelukast sodium in bulk and pharmaceutical dosage forms. Int Res J Pharm 3:150–153

    Google Scholar 

  • Sirsat M, Darasing R, Rathod Santosh Gahukar J, Akhare AA, Gawande VL, Maske NC, Munde BS, Padole DA, Rathod AV (2019) In vitro shoot proliferation from nodal segments of Indian blackberry (Syzygium cumini L.) Vividha. Int J Curr Microbiol App Sci 8:2464–2469

    Article  CAS  Google Scholar 

  • Suttle JC (1985) Involvement of ethylene in the action of the cotton defoliant Thidiazuron. Plant Physiol 78:272–276. https://doi.org/10.1104/pp.78.2.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swami S, Thakor N, Patil M and Haldankar P (2012) Jamun (Syzygium cumini (L.): A Review of Its Food and Medicinal Uses. Food and Nutrition Sciences, Vol. 3 (8) 1100-1117. doi: 10.4236/fns.2012.38146.

    Google Scholar 

  • Wang SY, Steffens GL, Faust M (1986) Breaking bud dormancy in apple with plant bioregulator, thidiazuron. Phytochemistry 25:311–317

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naaz, A., Siddique, I., Ahmad, A. (2021). TDZ-Induced Efficient Micropropagation from Juvenile Nodal Segment of Syzygium cumini (Skill): A Recalcitrant Tree. In: Siddique, I. (eds) Propagation and Genetic Manipulation of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-15-7736-9_12

Download citation

Publish with us

Policies and ethics