Journal of Business Economics

, Volume 84, Issue 7, pp 983–997 | Cite as

Centralized inventory in a farming community

  • M. G. Fiestras-Janeiro
  • I. García-Jurado
  • A. Meca
  • M. A. Mosquera
Original Paper

Abstract

A centralized inventory problem is a situation in which several agents face individual inventory problems and make an agreement to coordinate their orders with the objective of reducing costs. In this paper we identify a centralized inventory problem arising in a farming community in northwestern Spain, model the problem using two alternative approaches, find the optimal inventory policies for both models, and propose allocation rules for sharing the optimal costs in this context.

Keywords

Centralized inventory Cooperative games EOQ models Shapley value Core 

JEL

C71 C44 

References

  1. Dror M, Hartman BC (2011) Survey of cooperative inventory games and extensions. J Oper Res Soc 62:565–580CrossRefGoogle Scholar
  2. Fiestras-Janeiro MG, García-Jurado I, Meca A, Mosquera MA (2012a) Cooperative game theory and inventory management. Eur J Oper Res 210:459–466CrossRefGoogle Scholar
  3. Fiestras-Janeiro MG, García-Jurado I, Meca A, Mosquera MA (2012b) Cost allocation in inventory transportation systems. Top 20:397–410CrossRefGoogle Scholar
  4. Fiestras-Janeiro MG, García-Jurado I, Mosquera MA (2011) Cooperative games and cost allocation problems. Top 19:1–22CrossRefGoogle Scholar
  5. González-Díaz J, García-Jurado I, Fiestras-Janeiro MG (2010) An introductory course on mathematical game theory. Graduate Studies in Mathematics, vol 115. American Mathematical SocietyGoogle Scholar
  6. Guardiola LA, Meca A, Puerto J (2009) Production-inventory games: a new class of totally balanced combinatorial optimization games. Games Econ Behav 65:205–219CrossRefGoogle Scholar
  7. Hartman BC, Dror M (1996) Cost allocation in continuous review inventory models. Naval Res Logist 43:549–561CrossRefGoogle Scholar
  8. Hartman BC, Dror M, Shaked M (2000) Cores of inventory centralization games. Games Econ Behav 31:26–49CrossRefGoogle Scholar
  9. Littlechild SC, Owen G (1973) A simple expression for the Shapley value in a special case. Manag Sci 20:370–372CrossRefGoogle Scholar
  10. Meca A, García-Jurado I, Borm P (2003) Cooperation and competition in inventory games. Math Methods Oper Res 57:481–493Google Scholar
  11. Moretti S, Patrone F (2008) Transversality of the Shapley value. Top 16:1–41CrossRefGoogle Scholar
  12. Nagarajan M, So\(\breve{\rm s}\)ić G (2008) Game-theoretic analysis of cooperation among supply chain agents: review and extensions. Eur J Oper Res 187:719–745Google Scholar
  13. Shapley LS (1953) A value for n-person games. In: H Kuhn, A Tucker (ads) Contributions to the Theory of Games II. Princeton University Press, PrincetonGoogle Scholar
  14. van den Heuvel W, Borm P, Hamers H (2007) Economic lot-sizing games. Eur J Oper Res 176:1117–1130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. G. Fiestras-Janeiro
    • 1
  • I. García-Jurado
    • 2
  • A. Meca
    • 3
  • M. A. Mosquera
    • 1
  1. 1.Departamento de Estatística e Investigación OperativaUniversidade de VigoVigoSpain
  2. 2.Departamento de MatemáticasUniversidade da CoruñaA CoruñaSpain
  3. 3.Centro de Investigación OperativaUniversidad Miguel Hernández de ElcheElcheSpain

Personalised recommendations