Skip to main content
Log in

MicroRNAs in the neural system

  • Review
  • Published:
Frontiers in Biology

Abstract

Precise spatio-temporal control of gene expression at transcriptional and translational levels is required for both of proper developmental programming of the central nervous system and the performing of normal brain functions. Many studies have demonstrated that micro-RNAs (miRNAs), a class of endogenous small RNAs, participate in post-transcriptional regulation of gene expression, and thus execute regulatory functions in various biologic processes. Emerging evidence indicates that miRNAs participate in gene regulatory networks during the developmental, physiologic, and pathological processes of the brain. In this review, we attempt to summarize some of the recent advances in research on the involvement of miRNAs in the regulation of neuronal development, neuroplasticity, and brain diseases, revealing their indispensable roles in neural functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashraf S I, McLoon A L, Sclarsic S M, Kunes S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124(1): 191–205

    Article  PubMed  CAS  Google Scholar 

  • Barbato C, Arisi I, Frizzo M E, Brandi R, Da Sacco L, Masotti A (2009). Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol, 2009: 803069

  • Bell G W, Lewitter F (2009). Resources for small regulatory RNAs. In: Ausubel F M. et al., eds. Current protocols in molecular biology. Chapter 19, Unit 19.8

  • Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366

    Article  PubMed  CAS  Google Scholar 

  • Boissonneault V, Plante I, Rivest S, Provost P (2009). MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem, 284(4): 1971–1981

    Article  PubMed  CAS  Google Scholar 

  • Borrelli E, Nestler E J, Allis C D, Sassone-Corsi P (2008). Decoding the epigenetic language of neuronal plasticity. Neuron, 60(6): 961–974

    Article  PubMed  CAS  Google Scholar 

  • Bunger M K, Wilsbacher L D, Moran S M, Clendenin C, Radcliffe L A, Hogenesch J B, Simon M C, Takahashi J S, Bradfield C A (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7): 1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Carrettiero D C, Hernandez I, Neveu P, Papagiannakopoulos T, Kosik K S (2009). The cochaperone BAG2 sweeps paired helical filamentinsoluble tau from the microtubule. J Neurosci, 29(7): 2151–2161

    Article  PubMed  CAS  Google Scholar 

  • Cheng H Y M, Papp J W, Varlamova O, Dziema H, Russell B, Curfman J P, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007). microRNA modulation of circadian-clock period and entrainment. Neuron, 54(5): 813–829

    Article  PubMed  CAS  Google Scholar 

  • Chisholm A D, Jin Y (2005). Neuronal differentiation in C. elegans. Curr Opin Cell Biol, 17(6): 682–689

    Article  PubMed  CAS  Google Scholar 

  • Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri F F, Maio F, Cama A, Germanò A, Vita G, Tomasello F (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neurooncol, 93(3): 325–332

    Article  PubMed  CAS  Google Scholar 

  • Costa-Mattioli M, Sossin W S, Klann E, Sonenberg N (2009). Translational control of long-lasting synaptic plasticity and memory. 61(1): 10–26

    CAS  Google Scholar 

  • Cougot N, Babajko S, Séraphin B (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol, 165(1): 31–40

    Article  PubMed  CAS  Google Scholar 

  • Deleault K M, Skinner S J, Brooks S A (2008). Tristetraprolin regulates TNF TNF-alpha mRNA stability via a proteasome dependent mechanism involving the combined action of the ERK and p38 pathways. Mol Immunol, 45(1): 13–24

    Article  PubMed  CAS  Google Scholar 

  • Eberhart J K, He X, Swartz M E, Yan Y L, Song H, Boling T C, Kunerth A K, Walker M B, Kimmel C B, Postlethwait J H (2008). MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet, 40(3): 290–298

    Article  PubMed  CAS  Google Scholar 

  • Feinbaum R, Ambros V (1999). The timing of lin-4 RNA accumulation controls the timing of postembryonic developmental events in Caenorhabditis elegans. Dev Biol, 210(1): 87–95

    Article  PubMed  CAS  Google Scholar 

  • Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, Bozzoni I, Gulino A (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J, 27(19): 2616–2627

    Article  PubMed  CAS  Google Scholar 

  • Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell S W, Kim T K, Greenberg M E, Schratt G (2009). Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J, 28(6): 697–710

    Article  PubMed  CAS  Google Scholar 

  • Fiore R, Siegel G, Schratt G (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta, 1779(8): 471–478

    PubMed  CAS  Google Scholar 

  • Friggi-Grelin F, Lavenant-Staccini L, Therond P (2008). Control of antagonistic components of the hedgehog signaling pathway by microRNAs in Drosophila. Genetics, 179(1): 429–439

    Article  PubMed  CAS  Google Scholar 

  • Gekakis N, Staknis D, Nguyen H B, Davis F C, Wilsbacher L D, King D P, Takahashi J S, Weitz C J (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369): 1564–1569

    Article  PubMed  CAS  Google Scholar 

  • Giraldez A J, Cinalli R M, Glasner M E, Enright A J, Thomson J M, Baskerville S, Hammond S M, Bartel D P, Schier A F (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308(5723): 833–838

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini H K, van Dongen S, Enright A J (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36 (Database issue): D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Hébert S S, Horré K, Nicolaï L, Bergmans B, Papadopoulou A S, Delacourte A, De Strooper B (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis, 33(3): 422–428

    Article  PubMed  CAS  Google Scholar 

  • Hébert S S, Horré K, Nicolaï L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A, 105(17): 6415–6420

    Article  PubMed  Google Scholar 

  • Ikura T, Ogryzko V V, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell, 102(4): 463–473

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K A (2003). Rett Syndrome—an update. J Neural Transm, 110(6): 681–701

    Article  PubMed  CAS  Google Scholar 

  • Junn E, Lee K W, Jeong B S, Chan T W, Im J Y, Mouradian M M (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A, 106(31): 13052–13057

    Article  PubMed  Google Scholar 

  • Kapsimali M, Kloosterman W P, de Bruijn E, Rosa F, Plasterk R H, Wilson SW (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol, 8(8): R173

    Article  PubMed  CAS  Google Scholar 

  • Karres J S, Hilgers V, Carrera I, Treisman J, Cohen S M (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131(1): 136–145

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti W B, Voronov S V, Murchison E, Hannon G, Abeliovich A (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317(5842): 1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Klein M E, Lioy D T, Ma L, Impey S, Mandel G, Goodman R H (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat Neurosci, 10(12): 1513–1514

    Article  PubMed  CAS  Google Scholar 

  • Kosik K S (2006). The neuronal microRNA system. Nat Rev Neurosci, 7(12): 911–920

    Article  PubMed  CAS  Google Scholar 

  • Kuzin A, Kundu M, Brody T, Odenwald W F (2007). The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol, 310(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Jeon K, Lee J T, Kim S, Kim V N (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21(17): 4663–4670

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Samaco R C, Gatchel J R, Thaller C, Orr H T, Zoghbi H Y (2008). miR-19, miR-101 and miR-130 co-regulate ATXN1 levels to potentially modulate SCA1 pathogenesis. Nat Neurosci, 11(10): 1137–1139

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen T D, Lopes B, Schiff D, Purow B, Abounader R (2009). MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res, 69(19): 7569–7576

    Article  PubMed  CAS  Google Scholar 

  • Lukiw W J, Cui J G, Li Y Y, Culicchia F (2009). Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neurooncol, 91(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  • Makeyev E V, Zhang J, Carrasco M A, Maniatis T (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell, 27(3): 435–448

    Article  PubMed  CAS  Google Scholar 

  • Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N (2009). MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol, 19(3): 375–383

    Article  PubMed  CAS  Google Scholar 

  • Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003). The microRNA world: small is mighty. Trends Biochem Sci, 28(10): 534–540

    Article  PubMed  CAS  Google Scholar 

  • Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet, 17(8): 1192–1199

    Article  PubMed  CAS  Google Scholar 

  • Nudelman A S, DiRocco D P, Lambert T J, Garelick M G, Le J, Nathanson N M, Storm D R (2009). Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. doi: 1002/hipo.20646

  • Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 216(2): 671–680

    Article  PubMed  CAS  Google Scholar 

  • Paroo Z, Ye X, Chen S, Liu Q (2009). Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell, 139(1): 112–122

    Article  PubMed  CAS  Google Scholar 

  • Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772): 901–906

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst J L, Bradley A (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res, 14(10A): 1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun G, Wightman B, Ha I (2004). The 20 years it took to recognize the importance of tiny RNAs. Cell, 116(2 Suppl): S93–S96, 2, S96

    Article  PubMed  CAS  Google Scholar 

  • Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E E, Nitsch R, Wulczyn F G (2008). A feedback loop comprising lin-28 and let-7 controls prelet-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10(8): 987–993

    Article  PubMed  CAS  Google Scholar 

  • Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074): 283–289

    Article  PubMed  CAS  Google Scholar 

  • Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol, 5(3): R13

    Article  PubMed  Google Scholar 

  • Sethi P, Lukiw W J (2009). Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett, 459(2), 100–104

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Ko M L, Ko G Y (2009). Rhythmic expression of microRNA-26a regulates the L-type voltage-gated calcium channel alpha1C subunit in chicken cone photoreceptors. J Biol Chem, 284(38): 25791–25803

    Article  PubMed  CAS  Google Scholar 

  • Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner P F, Busch C J, Kane C, Hübel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg M E, Draguhn A, Rehmsmeier M, Martinez J, Schratt G M (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol, 11(6): 705–716

    Article  PubMed  CAS  Google Scholar 

  • Silber J, James C D, Hodgson J G (2009). microRNAs in gliomas: small regulators of a big problem. Neuromolecular Med, 11(3): 208–222

    Article  PubMed  CAS  Google Scholar 

  • Spence J (2009). Pathway prediction by bioinformatic analysis of the untranslated regions of the CFTR mRNA. Genomics, 94(1): 39–47

    Article  PubMed  CAS  Google Scholar 

  • Terasawa K, Ichimura A, Sato F, Shimizu K, Tsujimoto G (2009). Sustained activation of ERK1/2 by NGF induces microRNA-221 and 222 in PC12 cells. FEBS J, 276(12): 3269–3276

    Article  PubMed  CAS  Google Scholar 

  • Thatcher E J, Flynt A S, Li N, Patton J R, Patton J G (2007). MiRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev Dyn, 236(8): 2172–2180

    Article  PubMed  CAS  Google Scholar 

  • Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht J D, Pena J T, Rouhanifard S H, Muckenthaler M U, Tuschl T, Martin G R, Bauersachs J, Engelhardt S (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224): 980–984

    Article  PubMed  CAS  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee J W, Lee S K (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev, 21(7): 744–749

    Article  PubMed  CAS  Google Scholar 

  • Vo N, Klein M E, Varlamova O, Keller D M, Yamamoto T, Goodman R H, Impey S (2005). A cAMP-response element binding proteininduced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci U S A, 102(45): 16426–16431

    Article  PubMed  CAS  Google Scholar 

  • Wang G, van der Walt J M, Mayhew G, Li Y J, Züchner S, Scott W K, Martin E R, Vance J M (2008). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 82(2): 283–289

    Article  PubMed  CAS  Google Scholar 

  • Wang W X, Rajeev B W, Stromberg A J, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson P T (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci, 28(5): 1213–1223

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009). miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull, 80(4–5): 268–273

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Plasterk R H (2005). MicroRNA function in animal development. FEBS Lett, 579 (26): 5911–5922

    Article  CAS  Google Scholar 

  • Wu J I, Lessard J, Olave I A, Qiu Z, Ghosh A, Graef I A, Crabtree G R (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron, 56(1): 94–108

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Belasco J G (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol Cell Biol, 25 (21): 9198–9208

    Article  CAS  Google Scholar 

  • Yoo A S, Staahl B T, Chen L, Crabtree G R (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255): 642–646

    PubMed  CAS  Google Scholar 

  • Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009). Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol, 34(6): 1653–1660

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chao T, Li R, Liu W, Chen Y, Yan X, Gong Y, Yin B, Liu W, Qiang B, Zhao J, Yuan J, Peng X (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med, 87(1): 43–51

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, Zhang W, Kang C Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 2010)

  • Ziegelbauer J M, Sullivan C S, Ganem D (2009). Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet, 41(1): 130–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiumin Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, Q., Hu, Z. & Ma, L. MicroRNAs in the neural system. Front. Biol. 5, 219–226 (2010). https://doi.org/10.1007/s11515-010-0038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-010-0038-1

Keywords

Navigation