Skip to main content

Advertisement

Log in

microRNAs in Gliomas: Small Regulators of a Big Problem

  • ORIGINAL PAPER
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Gliomas are the most common form of primary brain tumors and are associated with a poor clinical outcome. The molecular mechanisms that contribute to gliomagenesis have become increasingly clear in recent years, yet much remains to be learned. This is particularly true for the role of microRNAs in gliomagenesis, as an appreciation for the significance of aberrant miRNA expression in human cancer has only emerged in the last 5 years. It is now evident that microRNAs regulate a wide variety of tumorigenic processes including cellular proliferation, differentiation, angiogenesis, invasion, and apoptosis. Here we review the current state of knowledge related to the role of microRNAs in glial tumor development. This is a rapidly evolving field and it is likely that we have only begun to appreciate the involvement of microRNAs in relation to glioma formation, and the therapeutic potential of microRNAs to improve outcome for glioma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcantara Llaguno, S., Chen, J., Kwon, C. H., Jackson, E. L., Li, Y., Burns, D. K., et al. (2009). Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell, 15, 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, H., Yokoyama, T., Fujiwara, K., Tari, A. M., Sawaya, R., Suki, D., et al. (2007). Phosphorylated Pak1 level in the cytoplasm correlates with shorter survival time in patients with glioblastoma. Clinical Cancer Research, 13, 6603–6609.

    Article  CAS  PubMed  Google Scholar 

  • Argyriou, A. A., Giannopoulou, E., & Kalofonos, H. P. (2009). Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas. Oncology, 77, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760.

    Article  CAS  PubMed  Google Scholar 

  • Birner, P., Gatterbauer, B., Oberhuber, G., Schindl, M., Rossler, K., Prodinger, A., et al. (2001). Expression of hypoxia-inducible factor-1 alpha in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer, 92, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., et al. (2008). hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research, 14, 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet, P., Dor, Y., Herbert, J. M., Fukumura, D., Brusselmans, K., Dewerchin, M., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394, 485–490.

    Article  CAS  PubMed  Google Scholar 

  • Cavalla, P., Piva, R., Bortolotto, S., Grosso, R., Cancelli, I., Chio, A., et al. (1999). P27/kip1 expression in oligodendrogliomas and its possible prognostic role. Acta Neuropathologica, 98, 629–634.

    Article  CAS  PubMed  Google Scholar 

  • Chalhoub, N., & Baker, S. J. (2009). PTEN and the PI3-kinase pathway in cancer. Annual Review of Pathology, 4, 127–150.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65, 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 28, 1385–1392.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Liu, W., Chao, T., Zhang, Y., Yan, X., Gong, Y., et al. (2008). MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Letters, 272, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, A. M., Byrom, M. W., Shelton, J., & Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 33, 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  • Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334, 1351–1358.

    Article  CAS  PubMed  Google Scholar 

  • Conaco, C., Otto, S., Han, J. J., & Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proceedings of the National Academy of Sciences, USA, 103, 2422–2427.

    Article  CAS  Google Scholar 

  • Conti, A., Aguennouz, M., La Torre, D., Tomasello, C., Cardali, S., Angileri, F. F., et al. (2009). miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. Journal of Neurooncology, 93, 325–332.

    Article  CAS  Google Scholar 

  • Corsten, M. F., Miranda, R., Kasmieh, R., Krichevsky, A. M., Weissleder, R., & Shah, K. (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Research, 67, 8994–9000.

    Article  CAS  PubMed  Google Scholar 

  • De Pietri Tonelli, D., Pulvers, J. N., Haffner, C., Murchison, E. P., Hannon, G. J., & Huttner, W. B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development, 135, 3911–3921.

    Article  PubMed  CAS  Google Scholar 

  • DeGregori, J. (2002). The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochimica et Biophysica Acta, 1602, 131–150.

    CAS  PubMed  Google Scholar 

  • Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38, 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  • Du, R., Petritsch, C., Lu, K., Liu, P., Haller, A., Ganss, R., et al. (2008). Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro-Oncology, 10, 254–264.

    Article  CAS  PubMed  Google Scholar 

  • Ekholm, S. V., & Reed, S. I. (2000). Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Current Opinion in Cell Biology, 12, 676–684.

    Article  CAS  PubMed  Google Scholar 

  • Elias, M. C., Tozer, K. R., Silber, J. R., Mikheeva, S., Deng, M., Morrison, R. S., et al. (2005). TWIST is expressed in human gliomas and promotes invasion. Neoplasia, 7, 824–837.

    Article  CAS  PubMed  Google Scholar 

  • Ewan, L. C., Jopling, H. M., Jia, H., Mittar, S., Bagherzadeh, A., Howell, G. J., et al. (2006). Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic, 7, 1270–1282.

    Article  CAS  PubMed  Google Scholar 

  • Fasanaro, P., D’Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., et al. (2008). MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. Journal of Biological Chemistry, 283, 15878–15883.

    Article  CAS  PubMed  Google Scholar 

  • Fasano, C. A., Dimos, J. T., Ivanova, N. B., Lowry, N., Lemischka, I. R., & Temple, S. (2007). shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell, 1, 87–99.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, I., Gagner, J. P., Law, M., Newcomb, E. W., & Zagzag, D. (2005). Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathology, 15, 297–310.

    Article  CAS  PubMed  Google Scholar 

  • Foshay, K. M., & Gallicano, G. I. (2007). Small RNAs, big potential: The role of MicroRNAs in stem cell function. Current Stem Cell Research & Therapy, 2, 264–271.

    Article  CAS  Google Scholar 

  • Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes and Development, 21, 2683–2710.

    Article  CAS  PubMed  Google Scholar 

  • Gabriely, G., Wurdinger, T., Kesari, S., Esau, C. C., Burchard, J., Linsley, P. S., et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molecular and Cellular Biology, 28, 5369–5380.

    Article  CAS  PubMed  Google Scholar 

  • Galardi, S., Mercatelli, N., Giorda, E., Massalini, S., Frajese, G. V., Ciafre, S. A., et al. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. Journal of Biological Chemistry, 282, 23716–23724.

    Article  CAS  PubMed  Google Scholar 

  • Gaur, A., Jewell, D. A., Liang, Y., Ridzon, D., Moore, J. H., Chen, C., et al. (2007). Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Research, 67, 2456–2468.

    Article  CAS  PubMed  Google Scholar 

  • Giaccia, A., Siim, B. G., & Johnson, R. S. (2003). HIF-1 as a target for drug development. Nature Reviews Drug Discovery, 2, 803–811.

    Article  CAS  PubMed  Google Scholar 

  • Gillies, J. K., & Lorimer, I. A. (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle, 6, 2005–2009.

    CAS  PubMed  Google Scholar 

  • Godlewski, J., Nowicki, M. O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research, 68, 9125–9130.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Sah, J. F., Beard, L., Willson, J. K., Markowitz, S. D., & Guda, K. (2008). The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer, 47, 939–946.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W. J., Zeng, M. S., Yadav, A., Song, L. B., Guo, B. H., Band, V., et al. (2007). Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells. Cancer Research, 67, 5083–5089.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, R., Ozawa, T., Gryaznov, S. M., Bollen, A. W., Lamborn, K. R., Frey II, W. H., et al. (2008). New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro-Oncology, 10, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, M. E., Drummond, D. C., Hong, K., Zheng, W. W., Khorosheva, V. A., Khorosheva, V. A., et al. (2006a). Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation. Molecular Pharmacology, 3, 726–736.

    Article  CAS  Google Scholar 

  • Hayes, M. E., Drummond, D. C., Kirpotin, D. B., Zheng, W. W., Noble, C. O., Park, J. W., et al. (2006b). Genospheres: Self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Therapy, 13, 646–651.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, C., Norris, K., Scheper, M. A., Nikitakis, N., & Sauk, J. J. (2007). High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Molecular Cancer, 6, 5.

    Article  PubMed  CAS  Google Scholar 

  • Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E., & Fuller, G. N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 25, 55–57.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10, 202–210.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Upregulation of miR-21 by HER2/neu signaling promotes cell invasion. Journal of Biological Chemistry, 284, 18515–18524.

    Article  CAS  PubMed  Google Scholar 

  • Huse, J. T., Brennan, C., Hambardzumyan, D., Wee, B., Pena, J., Rouhanifard, S. H., et al. (2009). The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes and Development, 23, 1327–1337.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, E. L., & Alvarez-Buylla, A. (2008). Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs, 188, 212–224.

    Article  PubMed  Google Scholar 

  • Jackson, E. L., Garcia-Verdugo, J. M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., et al. (2006). PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron, 51, 187–199.

    Article  CAS  PubMed  Google Scholar 

  • James, C. D., & Cavenee, W. K. (2009). Stem cells for treating glioblastoma: how close to reality? Neuro-Oncology, 11, 101.

    Article  PubMed  Google Scholar 

  • Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Kanu, O. O., Mehta, A., Di, C., Lin, N., Bortoff, K., Bigner, D. D., et al. (2009). Glioblastoma multiforme: A review of therapeutic targets. Expert Opinion on Therapeutic Targets, 13, 701–718.

    Article  CAS  PubMed  Google Scholar 

  • Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68, 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  • Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101, 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnert, F., Mancuso, M. R., Hampton, J., Stankunas, K., Asano, T., Chen, C. Z., et al. (2008). Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development, 135, 3989–3993.

    Article  CAS  PubMed  Google Scholar 

  • Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F. J., et al. (2007). A microRNA signature of hypoxia. Molecular and Cellular Biology, 27, 1859–1867.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. S., Erkeland, S. J., Pester, R. E., Chen, C. Y., Ebert, M. S., Sharp, P. A., et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proceedings of the National Academy of Sciences, USA, 105, 3903–3908.

    Article  CAS  Google Scholar 

  • Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). P21-activated kinases in cancer. Nature Reviews Cancer, 6, 459–471.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., & Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genetics, 39, 673–677.

    Article  CAS  PubMed  Google Scholar 

  • Laws, E. R., Parney, I. F., Huang, W., Anderson, F., Morris, A. M., Asher, A., et al. (2003). Survival following surgery and prognostic factors for recently diagnosed malignant glioma: Data from the Glioma Outcomes Project. Journal of Neurosurgery, 99, 467–473.

    Article  PubMed  Google Scholar 

  • le Sage, C., Nagel, R., Egan, D. A., Schrier, M., Mesman, E., Mangiola, A., et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO Journal, 26, 3699–3708.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E. J., Gusev, Y., Jiang, J., Nuovo, G. J., Lerner, M. R., Frankel, W. L., et al. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. International Journal of Cancer, 120, 1046–1054.

    Article  CAS  Google Scholar 

  • Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., et al. (2009a). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Letters, 275, 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009b). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383, 280–285.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., & Szoka, F. C., Jr. (2007). Lipid-based nanoparticles for nucleic acid delivery. Pharmaceutical Research, 24, 438–449.

    Article  PubMed  CAS  Google Scholar 

  • Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114, 97–109.

    Article  PubMed  Google Scholar 

  • Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67, 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682–688.

    Article  CAS  PubMed  Google Scholar 

  • Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.

    Article  CAS  PubMed  Google Scholar 

  • Medina, R., Zaidi, S. K., Liu, C. G., Stein, J. L., van Wijnen, A. J., Croce, C. M., et al. (2008). MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Research, 68, 2773–2780.

    Article  CAS  PubMed  Google Scholar 

  • Melo, S. A., Ropero, S., Moutinho, C., Aaltonen, L. A., Yamamoto, H., Calin, G. A., et al. (2009). A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics, 41, 365–370.

    Article  CAS  PubMed  Google Scholar 

  • Meng, F., Henson, R., Lang, M., Wehbe, H., Maheshwari, S., Mendell, J. T., et al. (2006). Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 130, 2113–2129.

    Article  CAS  PubMed  Google Scholar 

  • Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. New England Journal of Medicine, 359, 2641–2650.

    Article  CAS  PubMed  Google Scholar 

  • Miletic, H., Niclou, S. P., Johansson, M., & Bjerkvig, R. (2009). Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 13, 455–468.

    Article  CAS  PubMed  Google Scholar 

  • Mischel, P. S., Cloughesy, T. F., & Nelson, S. F. (2004). DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Reviews Neuroscience, 5, 782–792.

    Article  CAS  PubMed  Google Scholar 

  • Mizumatsu, S., Tamiya, T., Ono, Y., Abe, T., Matsumoto, K., Furuta, T., et al. (1999). Expression of cell cycle regulator p27Kip1 is correlated with survival of patients with astrocytoma. Clinical Cancer Research, 5, 551–557.

    CAS  PubMed  Google Scholar 

  • Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H., & Mourelatos, Z. (2006). RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA, 12, 187–191.

    Article  CAS  PubMed  Google Scholar 

  • Nieder, C., Adam, M., Molls, M., & Grosu, A. L. (2006). Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Critical Reviews in Oncology/Hematology, 60, 181–193.

    Article  PubMed  Google Scholar 

  • Okamoto, T., Sanda, T., & Asamitsu, K. (2007). NF-kappa B signaling and carcinogenesis. Current Pharmaceutical Design, 13, 447–462.

    Article  CAS  PubMed  Google Scholar 

  • Otsuka, M., Zheng, M., Hayashi, M., Lee, J. D., Yoshino, O., Lin, S., et al. (2008). Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. Journal of Clinical Investigation, 118, 1944–1954.

    Article  CAS  PubMed  Google Scholar 

  • Pallante, P., Visone, R., Ferracin, M., Ferraro, A., Berlingieri, M. T., Troncone, G., et al. (2006). MicroRNA deregulation in human thyroid papillary carcinomas. Endocrine-Related Cancer, 13, 497–508.

    Article  CAS  PubMed  Google Scholar 

  • Panner, A., James, C. D., Berger, M. S., & Pieper, R. O. (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Molecular and Cellular Biology, 25, 8809–8823.

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakopoulos, T., Shapiro, A., & Kosik, K. S. (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research, 68, 8164–8172.

    Article  CAS  PubMed  Google Scholar 

  • Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., et al. (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444, 761–765.

    Article  CAS  PubMed  Google Scholar 

  • Piva, R., Cavalla, P., Bortolotto, S., Cordera, S., Richiardi, P., & Schiffer, D. (1997). P27/kip1 expression in human astrocytic gliomas. Neuroscience Letters, 234, 127–130.

    Article  CAS  PubMed  Google Scholar 

  • Powis, G., & Kirkpatrick, L. (2004). Hypoxia inducible factor-1alpha as a cancer drug target. Molecular Cancer Therapeutics, 3, 647–654.

    CAS  PubMed  Google Scholar 

  • Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J., & Yla-Herttuala, S. (2008). Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Letters, 582, 2397–2401.

    Article  CAS  PubMed  Google Scholar 

  • Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., et al. (2009). Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circulation Research, 104, 879–886.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68, 8195–8200.

    Article  CAS  PubMed  Google Scholar 

  • Rich, J. N., & Bao, S. (2007). Chemotherapy and cancer stem cells. Cell Stem Cell, 1, 353–355.

    Article  CAS  PubMed  Google Scholar 

  • Rieger, J., Naumann, U., Glaser, T., Ashkenazi, A., & Weller, M. (1998). APO2 ligand: A novel lethal weapon against malignant glioma? FEBS Letters, 427, 124–128.

    Article  CAS  PubMed  Google Scholar 

  • Saito, R., Krauze, M. T., Noble, C. O., Drummond, D. C., Kirpotin, D. B., Berger, M. S., et al. (2006). Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model. Neuro-Oncology, 8, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K., & Kohmura, E. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125, 1407–1413.

    Article  CAS  Google Scholar 

  • Shi, L., Cheng, Z., Zhang, J., Li, R., Zhao, P., Fu, Z., et al. (2008). Hsa-Mir-181a and Hsa-Mir-181b function as tumor suppressors in human glioma cells. Brain Research, 1236, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Shilo, S., Roy, S., Khanna, S., & Sen, C. K. (2008). Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 471–477.

    Article  CAS  PubMed  Google Scholar 

  • Silber, J., Lim, D. A., Petritsch, C., Persson, A. I., Maunakea, A. K., Yu, M., et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med, 6, 14.

    Article  PubMed  CAS  Google Scholar 

  • Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., & Wulczyn, F. G. (2005). Regulation of miRNA expression during neural cell specification. European Journal of Neuroscience, 21, 1469–1477.

    Article  PubMed  Google Scholar 

  • Sonoda, Y., Ozawa, T., Hirose, Y., Aldape, K. D., McMahon, M., Berger, M. S., et al. (2001). Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Research, 61, 4956–4960.

    CAS  PubMed  Google Scholar 

  • Suarez, Y., Fernandez-Hernando, C., Yu, J., Gerber, S. A., Harrison, K. D., Pober, J. S., et al. (2008). Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proceedings of the National Academy of Sciences, USA, 105, 14082–14087.

    Article  CAS  Google Scholar 

  • Sulman, E. P., Guerrero, M., & Aldape, K. (2009). Beyond grade: molecular pathology of malignant gliomas. Seminars in Radiation Oncology, 19, 142–149.

    Article  PubMed  Google Scholar 

  • Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., et al. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Research, 68, 5540–5545.

    Article  CAS  PubMed  Google Scholar 

  • Takata, H., Kato, M., Denda, K., & Kitamura, N. (2000). A hrs binding protein having a Src homology 3 domain is involved in intracellular degradation of growth factors and their receptors. Genes Cells, 5, 57–69.

    Article  CAS  PubMed  Google Scholar 

  • van’t Veer, L. J., & Bernards, R. (2008). Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature, 452, 564–570.

    Article  PubMed  CAS  Google Scholar 

  • Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Aurora, A. B., Johnson, B. A., Qi, X., McAnally, J., Hill, J. A., et al. (2008a). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell, 15, 261–271.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Baskerville, S., Shenoy, A., Babiarz, J. E., Baehner, L., & Blelloch, R. (2008b). Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nature Genetics, 40, 1478–1483.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Medvid, R., Melton, C., Jaenisch, R., & Blelloch, R. (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nature Genetics, 39, 380–385.

    Article  CAS  PubMed  Google Scholar 

  • Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S., & Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry, 284, 5731–5741.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, W. A., Burns, M. J., Hackett, C., Aldape, K., Hill, J. R., Kuriyama, H., et al. (2003). Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Research, 63, 1589–1595.

    CAS  PubMed  Google Scholar 

  • Wu, L., & Belasco, J. G. (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Molecular and Cellular Biology, 25, 9198–9208.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19, 439–448.

    Article  CAS  PubMed  Google Scholar 

  • Wurdinger, T., Tannous, B. A., Saydam, O., Skog, J., Grau, S., Soutschek, J., et al. (2008). miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell, 14, 382–393.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H. F., He, T. Z., Liu, C. M., Cui, Y., Song, P. P., Jin, X. H., et al. (2009a). MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cellular Physiology and Biochemistry, 23, 347–358.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Qi, Y., Ng, S. S., Chen, X., Chen, S., Fang, M., et al. (2009b). MicroRNA-15b regulates cell cycle progression by targeting cyclins in glioma cells. Biochemical and Biophysical Research Communications, 380, 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009c). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research.

  • Yamashita, Y., Krauze, M. T., Kawaguchi, T., Noble, C. O., Drummond, D. C., Park, J. W., et al. (2007). Convection-enhanced delivery of a topoisomerase I inhibitor (nanoliposomal topotecan) and a topoisomerase II inhibitor (pegylated liposomal doxorubicin) in intracranial brain tumor xenografts. Neuro-Oncology, 9, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Handorean, A. M., & Iczkowski, K. A. (2009). MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. International Journal of Clinical and Experimental Pathology, 2, 361–369.

    CAS  PubMed  Google Scholar 

  • Yang, H., Kong, W., He, L., Zhao, J. J., O’Donnell, J. D., Wang, J., et al. (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Research, 68, 425–433.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S. L., Chen, H. Y., Chang, G. C., Chen, C. Y., Chen, H. W., Singh, S., et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell, 13, 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86, 1221–1232.

    Article  CAS  PubMed  Google Scholar 

  • Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simons, J. W., & Semenza, G. L. (2000). Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer, 88, 2606–2618.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Chao, T., Li, R., Liu, W., Chen, Y., Yan, X., et al. (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. Journal of Molecular Medicine, 87, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., et al. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Research, 59, 5830–5835.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Graeme Hodgson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silber, J., James, C.D. & Hodgson, J.G. microRNAs in Gliomas: Small Regulators of a Big Problem. Neuromol Med 11, 208–222 (2009). https://doi.org/10.1007/s12017-009-8087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-009-8087-9

Keywords

Navigation