Skip to main content
Log in

Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, constructal optimization of the twice Y-shaped assemblies of fins with six freedom degrees (characteristic parameters of geometry) is performed by employing finite element method and taking dimensionless maximum thermal resistance as a performance index, and the heat transfer performance of the twice Y-shaped assemblies of fins under various conditions with different freedom degrees are analyzed. The results show that the twice assemblies can improve the heat transfer performance of Y-shaped fin remarkably, and the minimum maximum thermal resistance of the twice Y-shaped assemblies of fins decreases by 36.37% compared with that of once Y-shaped assembly of fins. It is also proved again that the larger the number of freedom degrees for evolving is, the more perfect the system performance is. The effects of different characteristic parameters of geometry on the performance of the twice Y-shaped assemblies of fins are different, one should pay different attention to these parameters in practical engineering designs. The effects of two angles on the maximum thermal resistance are larger, but the optima of the two angles are robust. The effects of two height ratios on the maximum thermal resistance are more remarkable than those of two thickness ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Entropy Generation Minimization. New York: Wiley, 1996

    MATH  Google Scholar 

  2. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equibri Thermodyn, 1999, 24(4): 327–359

    Article  MATH  Google Scholar 

  3. Poulikakos D, Bejan A. Fin geometry for minimum entropy generation in forced convection. Trans ASME J Heat Transfer, 1982, 104: 616–623

    Article  Google Scholar 

  4. Chen L. Finite Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  5. Wang J, He J, Mao Z. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech & Astron, 2007, 50(2): 163–176

    Article  Google Scholar 

  6. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G-Phys Mech & Astron, 2008, 51(9): 1272–1286

    Article  MATH  Google Scholar 

  7. Li J, Chen L, Sun F. Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(4): 587–592

    Article  Google Scholar 

  8. Xia S, Chen L, Sun F. The optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(5): 708–719

    Article  Google Scholar 

  9. He J, He X, Tang W. The performance characteristics of an irreversi ble quantum Otto harmonic cycles. Sci China Ser G-Phys Mech & Astron, 2009, 52(9): 1317–1323

    Article  Google Scholar 

  10. Xia S, Chen L, Sun F. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law. Sci China Ser G-Phys Mech & Astron, 2009, 52(12): 1961–1970

    Article  Google Scholar 

  11. Liu X, Chen L, Wu F, et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci China Ser G-Phys Mech & Astron, 2009, 52(12): 1976–1988

    Article  Google Scholar 

  12. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51(10): 958–970

    Article  Google Scholar 

  13. Shu L, Chen L, Sun F. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser B-Chem, 2009, 52(8): 1154–1163

    Article  Google Scholar 

  14. Ding Z, Chen L, Sun F. Thermodynamic characteristic of a Brownian heat pump in a spatially periodic temperature field. Sci China: Phys Mech & Astron, 2010, 53(5): 876–885

    Article  Google Scholar 

  15. Ma K, Chen L, Sun F. Optimal paths for a light-driven engine with linear phenomenological heat transfer law. Sci China: Chem, 2010, 53(4): 917–926

    Article  Google Scholar 

  16. Xia S, Chen L, Sun F. Maximum work configurations of finite potential reservoir chemical engines. Sci China: Chem, 2010, 53, doi: 10.1007/s11426-010-0132-x

  17. Guo Z, Li D, Wang B. A novel concept for convective heat transfer enhancement. Int J Heat Mass Transfer, 1998, 41(14): 2221–2225

    Article  MATH  Google Scholar 

  18. Guo Z. Mechanism and control of convective heat transfer—coordination of velocity and heat flow fields. Chin Sci Bull, 2001, 46(7): 596–599

    Article  Google Scholar 

  19. Guo Z, Wei S, Cheng X. A novel method to improve the performance of heat exchanger—Temperature fields coordination of fluids. Chin Sci Bull, 2004, 49(1): 111–114

    Google Scholar 

  20. Guo Z, Tao W, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. Int J Heat Mass Transfer, 2005, 48(9): 1797–1807

    Article  MATH  Google Scholar 

  21. Meng J, Chen Z, Li Z, et al. Field-coordination analysis and numerical study on turbulent convective heat transfer enhancement. J Enhanced Heat Transfer, 2005, 12(1): 73–84

    Article  Google Scholar 

  22. Wu J, Tao W. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A: Verification of field synergy principle. Int J Heat Mass Transfer, 2008, 51(5–6): 1179–1191

    Article  MATH  Google Scholar 

  23. Chen Q, Ren J, Guo Z. Field synergy analysis and optimization of decontamination ventilation designs. Int J Heat Mass Transfer, 2008, 51(3–4): 873–881

    Article  MATH  Google Scholar 

  24. Chen Q, Ren J, Guo Z. Fluid flow field synergy principle and its application to drag reduction. Chin Sci Bull, 2008, 53(11): 1768–1772

    Article  Google Scholar 

  25. Gou C, Cai R, Liu Q. Field synergy analysis of laminar forced convection between two parallel penetrable walls. Int J Heat Mass Transfer, 2009, 52(3–4): 1044–1052

    Article  MATH  Google Scholar 

  26. Cai R, Liu Q, Gou C. The non-synergy field of convection. Int J Heat Mass Transfer, 2009, 52(19–20): 4343–4349

    Article  MATH  Google Scholar 

  27. Liu W, Liu Z, Ming T, et al. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement. Int J Heat Mass Transfer, 2009, 52(19–20): 4669–4672

    MATH  Google Scholar 

  28. Hu T, Min J, Song Y. Analysis of the effects of the heat of sorption on the process of heat transfer in moisture exchange across a membrane. Sci China Ser E-Tech Sci, 2008, 51(12): 2120–2127

    Article  Google Scholar 

  29. Liu W, Liu Z, Guo Z. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement. Chin Sci Bull, 2009, 54(19): 3579–3586

    Article  Google Scholar 

  30. Liu W, Liu Z, Huang S. Physical quantity synergy in the field of turbulent heat transfer and its analysis for heat transfer enhancement (in Chinese). Chin Sci Bull, 2010, 55(3): 281–288

    Article  Google Scholar 

  31. Li Z, Guo Z. Field Synergy Principle of Heat Convection Optimization (in Chinese). Beijing: Science Press, 2010

    Google Scholar 

  32. Bejan A. Street network theory of organization in nature. J Adv Transp, 1996, 30(2): 85–107

    Article  Google Scholar 

  33. Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Trans ASME J Heat Transfer, 1997, 40(4): 799–816

    MATH  Google Scholar 

  34. Bejan A, Lorente S. Design with Constructal Theory. New Jersey: Wiley, 2008

    Book  Google Scholar 

  35. Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser E-Tech Sic, 2006, 49(3): 332–341

    Article  Google Scholar 

  36. Zhou S, Chen L, Sun F. Constructal theory in designing photovoltaic cell (in Chinese). Prog Natl Sci, 2006, 16(11): 1500–1505

    Google Scholar 

  37. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51(8): 1283–1295

    Article  MATH  Google Scholar 

  38. Wei S, Chen L, Sun F. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52(10): 2981–2989

    Article  MATH  Google Scholar 

  39. Wei S, Chen L, Sun F. Constructal optimization of discrete and continuous variable cross-section conducting path based on entransy dissipation rate minimization. Sci China: Tech Sci, 2010, 56(6): 1666–1677

    Article  Google Scholar 

  40. Yu B, Li B. Fractal-like tree networks reducing the thermal conductivity. Phys Rev E 2006, 73(6):066302

    Article  MathSciNet  Google Scholar 

  41. Wang A, Liang X, Ren J. Constructal enhancement of heat conduction with phase change. Int J Thermophys, 2006, 27(1): 126–138

    Article  Google Scholar 

  42. Xie Z, Chen L, Sun F. Constructal optimization of a vertical insulating wall based on a complex objective combining heat flow and strength. Sci China: Tech Sci, 2010, 53(8): 2278–2290

    Article  Google Scholar 

  43. Bejan A, Rocha L A O, Lorente S. Thermodynamic optimization of geometry: T and Y-shaped constructs of fluid streams. Int J Thermal Sci, 2000, 39(9–11): 949–960

    Article  Google Scholar 

  44. Bejan A, Errera M R. Convective trees of fluid channels for volumetric cooling. Int J Heat Mass Transfer, 2000, 43(17): 3105–3118

    Article  MATH  Google Scholar 

  45. Azoumah Y, Neveu P, Mazet N. Constructal design combined with entropy generation minimization for solid-gas reactors. Int J Thermal Sci, 2006, 45(7): 716–728

    Article  Google Scholar 

  46. Zhou S, Chen L, Sun F. Constructal optimization for solid-gas reactors based on triangular element. Sci China Ser E-Tech Sci, 2008, 51(9):1554–1562

    Article  MATH  Google Scholar 

  47. Bejan A, Dan N. Constructal trees of convective fins. Trans. ASME J Heat Transfer, 1999, 121(3): 675–682

    Article  Google Scholar 

  48. Alebrahim A, Bejan A. Constructal trees of circular fins for conductive and convective heat transfer. Int J Heat Mass Transfer, 1999, 42(19): 3585–3597

    Article  MATH  Google Scholar 

  49. Bejan A, Almogbel M. Constructal T-shaped fins. Int J Heat Mass Transfer, 2000, 43(12–15): 2101–2115

    Article  MATH  Google Scholar 

  50. Lorenzini G, Rocha L A O. Constructal design of Y-shaped assembly of fins. Int J Heat Mass Transfer, 2006, 49(23–24): 4552–4557

    Article  MATH  Google Scholar 

  51. Lorenzini G, Rocha L A O. Constructal design of T-Y assembly of fins for an optimized heat removal. Int J Heat Mass Transfer, 2009, 52(5–6): 1458–1463

    Article  MATH  Google Scholar 

  52. Lorenzini G, Moretti S. A CFD application to optimize T-shaped fins: comparisons to the constructal theory’s results. Trans ASME J Electron Packag, 2007, 129(3): 324–327

    Article  Google Scholar 

  53. Lorenzini G, Moretti S. Numerical analysis on heat removal from Y-shaped fins: Efficiency and volume occupied for a new approach to performance optimization. Int J Thermal Sci, 2007, 46(6): 573–579

    Article  Google Scholar 

  54. Lorenzini G, Moretti S. Numerical heat transfer optimization in modular systems of Y-shaped fins. Trans ASME J Heat Transfer, 2008, 130(8): 081801

    Article  Google Scholar 

  55. Lorenzini G, Moretti S. Numerical analysis of heat removal enhancement with extended surfaces. Int J Heat Mass Transfer, 2007, 50(3–4): 746–755

    Article  Google Scholar 

  56. Lorenzini G, Moretti S. Numerical performance analysis of constructal and Y finned heat exchanging modules. Trans ASME J Electron Packag, 2009, 131(3): 031012

    Article  Google Scholar 

  57. Lorenzini G, Moretti S. A Bejan’s constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition. Trans ASME J Heat Transfer, 2009, 131(8): 081801

    Article  Google Scholar 

  58. Sharqawy M H, Zubair S M. Performance and optimum geometry of spines with simultaneous heat and mass transfer. Int J Thermal Sci, 2009, 48(11): 2130–2138

    Article  Google Scholar 

  59. Biserni C, Rocha L A O, Bejan A. Inverted fins: geometric optimization of the intrusion into a conducting wall. Int J Heat Mass Transfer, 2004, 47(12–13): 2577–2583

    Article  MATH  Google Scholar 

  60. Biserni C, Rocha L A O, Stanescu G, et al. Constructal H-shaped cavities according to Bejan’s theory. Int J Heat Mass Transfer, 2007, 50(11–12): 2132–2138

    Article  MATH  Google Scholar 

  61. Rocha L A O, Montanari G C, dos Santos E D, et al. Constructal design applied to the study of cavities into a solid conducting wall. ENCIT 2004, Rio de Janeiro, Brazil, 2004

  62. Rocha L A O, Lorenzini E, Biserni C. Geometric optimization of shapes on the basis of Bejan’s Constructal theory. Int Comm Heat Mass Transfer, 2005, 32(10): 1281–1288

    Article  Google Scholar 

  63. Lorenzini G, Rocha L A O. Geometric optimization of T-Y-shaped cavity according to Constructal design. Int J Heat Mass Transfer, 2009, 52(21–22): 4683–4688

    Article  MATH  Google Scholar 

  64. Xie Z, Chen L, Sun F. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52(12): 3504–3513

    Article  Google Scholar 

  65. Xie Z, Chen L, Sun F. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54(23): 4418–4427

    Article  Google Scholar 

  66. Guo Z, Cheng X, Xia Z. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chin Sci Bull, 2003, 48(4): 406–410

    Google Scholar 

  67. Guo Z, Zhu H, Liang X. Entransy—A physical quantity describing heat transfer ability. Int J Heat Mass Transfer, 2007, 50(13–14): 2545–2556

    Article  MATH  Google Scholar 

  68. Liu X, Meng J, Guo Z. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization. Chin Sci Bull, 2009, 54(6): 943–947

    Article  Google Scholar 

  69. Chen Q, Ren J. Generalized thermal resistance for convective heat transfer and its relation to entransy dissipation. Chin Sci Bull, 2008, 53(23): 3753–3761

    Article  Google Scholar 

  70. Guo J, Xu M, Cheng L. Principle of equipartition of entransy dissipation for heat exchanger design. Sci China Ser-Tech Sci, 2010, 53(5): 1309–1314

    Article  Google Scholar 

  71. Wu J, Liang X. Application of entransy dissipation extremum principle in radiative heat transfer optimization. Sci China Ser E-Tech Sci, 2008, 51(8): 1306–1314

    Article  MATH  MathSciNet  Google Scholar 

  72. Cheng X, Xu X, Liang X. Homogenization of temperature field and temperature gradient field. Sci China Ser E-Tech Sci, 2009, 52(10):2937–2942

    Article  MATH  Google Scholar 

  73. Wang S, Chen Q, Zhang B, et al. A general theoretical principle for single-phase convective heat transfer enhancement. Sci China Ser E-Tech Sci, 2009, 52(12):3521–3526

    Article  MathSciNet  Google Scholar 

  74. Chen Q, Ren J, Guo Z. The extremum principle of mass entransy dissipation and its application to decontamination ventilation designs in space station cabins. Chin Sci Bull, 2009, 54(16): 2862–2870

    Article  Google Scholar 

  75. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54(19): 3587–3595

    Article  Google Scholar 

  76. Wang S, Chen Q, Zhang B. An equation of entransy and its application. Chin Sci Bull, 2009, 54(19): 3572–3578

    Article  Google Scholar 

  77. Guo J, Cheng L, Xu M. Entransy dissipation number and its application to heat exchanger performance evaluation. Chin Sci Bull, 2009, 54(15): 2708–2713

    Article  Google Scholar 

  78. Liu X, Guo Z. A novel method for heat exchanger analysis (in Chinese). Acta Phys Sin, 2009, 58(7): 4766–4771

    MathSciNet  Google Scholar 

  79. Xia S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase processes. Sci China: Tech Sci, 2010, 53(4): 960–968

    Article  MATH  Google Scholar 

  80. Xiao Q, Chen L, Sun F. Constructal entransy dissipation rate minimization for “disc-point” heat conduction. Chin Sci Bull, 2010, in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Chen, L. & Sun, F. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Sci. China Technol. Sci. 53, 2756–2764 (2010). https://doi.org/10.1007/s11431-010-4037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-4037-x

Keywords

Navigation