Skip to main content
Log in

Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

A new cyclic model of a four-reservoir isothermal chemical potential transformer with irreversible mass transfer, mass leakage and internal dissipation is put forward in this paper. The optimal relation between the coefficient of performance (COP) and the rate of energy pumping of the generalized irreversible four-reservoir isothermal chemical potential transformer has been derived by using finite-time thermodynamics or thermodynamic optimization. The maximum COP and the corresponding rate of energy pumping, as well as the maximum rate of energy pumping and the corresponding COP, have been obtained. Moreover, the influences of the irreversibility on the optimal performance of the isothermal chemical potential transformer have been revealed. It was found that the mass leakage affects the optimal performance both qualitatively and quantitatively, while the internal dissipation affects the optimal performance quantitatively. The results obtained herein can provide some new theoretical guidelines for the optimal design and development of a class of isothermal chemical potential transformers, such as mass exchangers, electrochemical, photochemical and solid state devices, fuel pumps, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen B, Berry R S, Ondrechen M J, Salamon P. Thermodynamics for processes in finite time. Acc Chem Res, 1984, 17(8): 266–271

    Article  CAS  Google Scholar 

  2. Sieniutycz S, Salamon P, ed. Advances in Thermodynamics. Volume 4: Finite Time Thermodynamics and Thermoeconomics. New York: Taylor & Francis, 1990

  3. Geva E, Kosloff R. A quantum-mechanical heat engine operating in finite time: A model consisting of spin-1/2 systems as the working fluid. J Chem Phys, 1992, 96(4): 3054–3067

    Article  Google Scholar 

  4. Geva E, Kosloff R. The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier. J Chem Phys, 1996, 104(19): 7681–7699

    Article  CAS  Google Scholar 

  5. Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  6. Chen L, Wu C, Sun F. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equ T, 1999, 24(4): 327–359

    Article  CAS  Google Scholar 

  7. Chen L, Sun F. Advances in Finite Time Thermodynamics Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  8. Chen L. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  9. Wu F, Chen L, Sun F, Yu J. Finite-Time Thermodynamic Optimization for Stirling Machines (in Chinese). Beijing: Chemical Industry Press, 2008

    Google Scholar 

  10. De Vos A. Endoreversible thermodynamics and chemical reactions. J Phys Chem, 1991, 95(18): 4534–4540

    Article  Google Scholar 

  11. Gordon J M. Maximum work from isothermal chemical engines. J Appl Phys, 1993, 73(1): 8–11

    Article  CAS  Google Scholar 

  12. Tsirlin A M, Kazakov V, Kan N M, Trushkov V V. Thermodynamic analysis and thermodynamic efficiency of chemical reactors. J Phys Chem B, 2006, 110(5): 2338–2342

    Article  CAS  Google Scholar 

  13. Gordon J M, Orlov V N. Performance characteristics of endoreversible chemical engines. J Appl Phys, 1993, 74(9): 5303–5308

    Article  CAS  Google Scholar 

  14. Chen L, Sun F, Wu C. Performance characteristics of isothermal chemical engines. Energ Conv Mgnt, 1997, 38(18): 1841–1846

    Article  CAS  Google Scholar 

  15. Chen L, Sun F, Wu C. Performance of chemical engines with a mass leak. J Phys D: Appl Phys, 1998, 31(13): 1595–1600.

    Article  CAS  Google Scholar 

  16. Chen L, Sun F, Wu C, Gong J. Maximum power of a combined cycle isothermal chemical engine. Appl Th Eng, 1997, 17(7): 629–637

    Article  CAS  Google Scholar 

  17. Chen L, Duan H, Sun F, Wu C. Performance of a combined-cycle chemical engine with mass leak. J Non-Equ T, 1999, 24(3): 280–290

    Article  CAS  Google Scholar 

  18. Lin G, Chen J, Bruck E. Irreversible chemical-engines and their optimal performance analysis. Appl Energ, 2004, 78(2): 123–136

    Article  CAS  Google Scholar 

  19. Tsirlin A M, Leskov E E, Kazakov V. Finite time thermodynamics: Limiting performance of diffusion engines and membrane systems. J Phys Chem A, 2005, 109(44): 9997–10003

    Article  CAS  Google Scholar 

  20. Lin G, Chen J. Optimal analysis on the cyclic performance of a class of chemical pumps. Appl Energ, 2001, 70(1): 35–47

    Article  CAS  Google Scholar 

  21. Lin G, Chen J, Brück E, Hua B. Optimization of performance characteristics in a class of irreversible chemical pumps. Math Comp M, 2006, 43(7–8): 743–753

    Google Scholar 

  22. Lin G, Chen J, Hua B. General performance characteristics of an irreversible three source chemical pump. Energ Conv Mgnt, 2003, 44(10): 1719–1731

    Article  CAS  Google Scholar 

  23. Wu S, Lin G, Chen J, Hua B. Optimization on the performance characteristics of a three-source chemical pump affected by multi-irre-versibilities. Math Comp M, 2005, 41(2–3): 241–251

    Article  Google Scholar 

  24. Lin G, Chen J, Wu C. The equivalent combined cycle of an irreversible chemical potential transformer and its optimal performance. Exergy. An Int J, 2002, 2(2): 119–124

    Article  Google Scholar 

  25. Wu S, Lin G, Chen J. Optimization on the performance characteristic of a three-source chemical potential transformer (in Chinese). J Eng Thermophys, 2004, 25(3): 379–381

    Google Scholar 

  26. Xia D, Chen L, Sun F. Performance of a four-reservoir chemical potential transformer with irreversible mass transfer and mass leakage. Appl Th Eng, 2007, 27(8–9): 1534–1542

    Article  CAS  Google Scholar 

  27. Chen J. The COP of a multi-temperature-level absorption heat transformer at maximum specific heating load. J Phys D: Appl Phys, 1998, 31(22): 3316–3322

    Article  CAS  Google Scholar 

  28. Qin X, Chen L, Sun F, Wu C. Optimal performance of an endoreversible four-heat-reservoir absorption heat-transformer. Open Sys Infor Dyn, 2004, 11(2): 147–159

    Article  Google Scholar 

  29. Qin X, Chen L, Sun F, Wu C. Absorption heat-transformer and its optimal performance. Appl Energ, 2004, 78(3): 329–346

    Article  Google Scholar 

  30. Qin X, Chen L, Sun F, Wu C. Performance of an endoreversible four-heat-reservoir absorption heat-transformer with a generalized heat transfer law. Int J Ambient Energ, 2005, 26(4): 171–179

    Google Scholar 

  31. De Vos A. The endoreversible theory of solar energy conversion: A tutorial. Sol Ener Mater Sol Cells, 1993, 31(1): 75–93

    Article  Google Scholar 

  32. De Vos A. Thermodynamics of photochemical solar energy conversion. Sol En Mater Sol Cells, 1995, 38(1–4): 11–22

    Article  Google Scholar 

  33. Jernqvist Å, Abrahamsson K, Aly G. On the efficiencies of absorption heat transformers. Heat Recovery System & CHP, 1992, 12(4): 323–334

    Article  CAS  Google Scholar 

  34. Abrahamsson K, Jernqvist Å. Carnot comparison of multi-temperature level absorption heat cycles. Int J Refr, 1993, 16(4): 240–246

    Article  CAS  Google Scholar 

  35. Chen J. Optimal choice of the performance parameters of an absorption heat transformer. Heat Recovery System and CHP, 1995, 15, 249–256

    Article  Google Scholar 

  36. Chen J. The influence of multi-irreversibilities on the performance of a heat transformer. J Phys D: Appl Phys, 1997, 30(21): 2953–2957

    Article  CAS  Google Scholar 

  37. Feidt M. Thermodynamique des machines tri et quadrithermes. Journ SFT, du 8 decembre 2004: Machines thermiques exotiques

  38. Grosu L, Feidt M, Benelmir R. Study of the improvement in the performance coefficient of machines operating with three reservoirs. Int J Exerg, 2004, 1(1): 147–162

    Article  Google Scholar 

  39. De Vos A. Is a solar cell an endoreversible engine? Solar Cells, 1991, 31(2): 181–196

    Article  Google Scholar 

  40. Ries H, McEvoy A J. Chemical potential and temperature of light. J Photochem Photobiol A, 1991, 59(1): 11–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

Supported by the Program for New Century Excellent Talents of China (Grant No. NCET-04-1006) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, D., Chen, L. & Sun, F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci. China Ser. B-Chem. 51, 958–970 (2008). https://doi.org/10.1007/s11426-008-0062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-008-0062-z

Keywords

Navigation