Skip to main content
Log in

Ecological optimization of an irreversible harmonic oscillators Carnot heat engine

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A model of an irreversible quantum Carnot heat engine with heat resistance, internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach, equations of some important performance parameters, such as power output, efficiency, exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79(3): 1191–1218

    Article  ADS  Google Scholar 

  2. Berry R S, Kazakov V A, Sieniutycz S, et al. Thermodynamic Optimization of Finite Time Processes. Chichester: Wiley, 1999

    Google Scholar 

  3. Chen L, Wu C, Sun F. Finite time thermodynamic optimization of entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24(4): 327–359

    Article  MATH  ADS  Google Scholar 

  4. Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  5. Chen L. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  6. Wu F, Chen L, Sun F, et al. Finite Time Thermodynamic Optimization of Stirling Engine (in Chinese). Beijing: Chemical Industry Press, 2008

    Google Scholar 

  7. Wu W, Chen L, Sun F. Improvement of tree-like network constructal method for heat conduction optimization. Sci China Ser E-Tech Sci, 2006, 49(3): 332–341

    Article  Google Scholar 

  8. Zhou S, Chen L, Sun F. Constructal optimization for solid-gas reactors based on triangular element. Sci China Ser E-Tech Sci, 2008, 51(9): 1554–1562

    Article  MATH  Google Scholar 

  9. Wei S, Chen L, Sun F. “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E-Tech Sci, 2008, 51(8): 1283–1295

    Article  MATH  Google Scholar 

  10. Wei S, Chen L, Sun F. Constructal multidisciplinary optimization of electromagnet based on entransy dissipation minimization. Sci China Ser E-Tech Sci, 2009, 52(10): 2981–2989

    Article  MATH  Google Scholar 

  11. Xie Z, Chen L, Sun F. Constructal optimization for geometry of cavity by taking entransy dissipation minimization as objective. Sci China Ser E-Tech Sci, 2009, 52, doi:10.1007/s11431-009-0319-6

  12. Xie S, Chen L, Sun F. Entransy dissipation minimization for liquid-solid phase change processes. Sci China Ser E-Tech Sci, in press

  13. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative heat transfer law. Sci China Ser G-Phys Mech Astron, 2008, 51(9): 1272–1286

    Article  MATH  ADS  Google Scholar 

  14. Li J, Chen L, Sun F. Optimal configuration for a finite high-temperature source heat engine cycle with complex heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52(4): 587–592

    Article  ADS  Google Scholar 

  15. Xia S, Chen L, Sun F. Optimal path of piston motion for Otto cycle with linear phenomenological heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52(5): 708–719

    Article  ADS  Google Scholar 

  16. Xia S, Chen L, Sun F. Maximum power output of a class of irreversible non-regeneration heat engines with a non-uniform working fluid and linear phenomenological heat transfer law. Sci China Ser G-Phys Mech Astron, 2009, 52, doi: 10.1007/s11433-009-0224-9

  17. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible four-reservoir isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51(10): 958–970

    Article  Google Scholar 

  18. Shu L, Chen L, Sun F. The minimal average heat consumption for heat-driven binary separation process with linear phenomenological heat transfer law. Sci China Ser B-Chem, 2009, 52(8): 1154–1163

    Article  Google Scholar 

  19. Ma K, Chen L, Sun F. Optimal paths for a light-driven engine with linear phenomenological heat transfer law. Sci China Ser B-Chem, in press

  20. Xia S, Chen L, Sun F. Maximum work configurations of finite potential reservoir chemical engines. Sci China Ser B-Chem, 2009, 52, in press

  21. Xia S, Chen L, Sun F. Optimization for entransy dissipation minimization in heat exchanger. Chin Sci Bull, 2009, 54(19): 3587–3595

    Article  Google Scholar 

  22. Xie Z, Chen L, Sun F. Constructal optimization on T-shaped cavity based on entransy dissipation minimization. Chin Sci Bull, 2009, 54, doi: 10. 1007/s1434-009-0507-6

    Google Scholar 

  23. Kosloff R. A quantum mechanical open system as a model of a heat engine. J Chem Phys, 1984, 80(4): 1625–1631

    Article  ADS  Google Scholar 

  24. Geva E, Kosloff R. A quantum-mechanical heat engine operating in finite time: a model consisting of spin-1/2 systems as the working fluid. J Chem Phys, 1992, 96(4): 3054–3067

    Article  ADS  Google Scholar 

  25. Geva E, Kosloff R. On the classical limit of quantum thermodynamics in finite time. J Chem Phys, 1992, 97(6): 4398–4412

    Article  ADS  Google Scholar 

  26. Jin X, Wu F, Sun F, et al. Exergoeconomic optimal performance of a Carnot quantum engine at classical limit (in Chinese). Pow Sys Eng, 1996, 12(6): 42–45

    Google Scholar 

  27. Wu F, Chen L, Sun F, et al. Finite-time exergoeconomic performance bound for a quantum Stirling engine. Int J Eng Sci, 2000, 38(2): 239–247

    Article  Google Scholar 

  28. Lin B, Chen J. Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Phys Rev E, 2003, 67(4): 046105

    Article  ADS  Google Scholar 

  29. Wu F, Chen L, Sun F, et al. Optimization criteria for an irreversible quantum Brayton engine with an ideal Bose gas. J Appl Phys, 2006, 99(5): 054904

    Article  ADS  Google Scholar 

  30. Wang J, He J, Mao Z. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 163–176

    Article  Google Scholar 

  31. He J, He X, Tang W. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle. Sci China Ser G-Phys Mech Astron, 2009, 52(9): 1317–1323

    Article  ADS  Google Scholar 

  32. Wu F, Chen L, Sun F, et al. Performance and optimization criteria of forward and reverse quantum Stirling cycles. Energy Convers Mgmt, 1998, 39(8): 733–739

    Article  Google Scholar 

  33. Wu F, Chen L, Sun F, et al. Optimal performance of an irreversible quantum Brayton refrigerator with ideal Bose gases. Phys Scr, 2006, 73(5): 452–457

    Article  ADS  Google Scholar 

  34. Wu F, Chen L, Sun F. Optimum performance of a quantum Carnot refrigerator with the refrigeration rate in cooperation with the entropy production rate (in Chinese). Cryogenics, 1996, 89(1): 1–5

    Google Scholar 

  35. Lin B, Chen J. General performance characteristics of a quantum heat pump cycle using harmonic oscillators as the working substance. Phys Scr, 2005, 71(1): 12–19

    Article  MATH  ADS  Google Scholar 

  36. Feldmann T, Kosloff R. Performance of discrete heat engines and heat pumps in finite time. Phys Rev E, 2000, 61(5): 4774–4790

    Article  ADS  Google Scholar 

  37. Wu F, Chen L, Wu S, et al. Performance of an irreversible quantum Carnot engine with spin-1/2. J Chem Phys, 2006, 124(21): 214702

    Article  ADS  Google Scholar 

  38. Lin B, Chen J. Optimal analysis of the performance of an irreversible quantum heat engine with spin systems. J Phys A-Math Gen, 2005, 38(1): 69–79

    Article  MATH  ADS  Google Scholar 

  39. Wang J, He J, Xin Y. Performance analysis of a spin quantum heat engine cycle with internal friction. Phys Scr, 2007, 75(2): 227–234

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Zhang G. F. Entangled quantum heat engines based on two two-spin systems with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Eur Phys J D, 2008, 49(1): 123–128

    Article  ADS  Google Scholar 

  41. Wu F, Chen L, Wu S, et al. Performance of an irreversible quantum Ericsson cooler at low temperature limit. J Phys D-Appl Phys, 2006, 39(21): 4731–4737

    Article  ADS  Google Scholar 

  42. He J, Wu X, Ouyang W. Performance optimization of an irreversible quantum spin refrigeration cycle. Int J Thermal Sci, 2006, 45(9): 938–944

    Article  Google Scholar 

  43. He J, Xin Y, He X. Performance optimization of quantum Brayton refrigeration cycle working with spin systems. Appl Energy, 2007, 84(2): 176–186

    Article  MathSciNet  Google Scholar 

  44. Wu F, Chen L, Sun F, et al. Optimum performance parameters for a quantum Carnot heat pump with spin-1/2. Energy Convers Mgmt, 1998, 39(11): 1161–1167

    Article  Google Scholar 

  45. Lin B, Chen J. performance analysis of a quantum heat-pump using spin systems as the working substance. Appl Energy, 2004, 78(1): 75–93

    Article  Google Scholar 

  46. Wu F, Chen L, Wu S, et al. Thermodynamic performance of a laser cryocooler. J Chem Phys, 2007, 126(20): 204502

    Article  ADS  Google Scholar 

  47. Geva E, Kosloff R. Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics. Phys Rev E, 1993, 49(5): 3903–3918

    Article  ADS  Google Scholar 

  48. Quan H, Zhang P, Sun C. Quantum heat engine with multilevel quantum systems. Phys Rev E, 2005, 72(5): 056110

    Article  ADS  Google Scholar 

  49. Tien D, Kieu. The second law, Maxwell’s demon, and work derivable from quantum heat engines. Phys Rev Lett, 2004, 93(14): 140403

    Article  MathSciNet  Google Scholar 

  50. Şişman A, Saygın H. On the power cycles working with the ideal quantum gases-I: The Ericsson cycle. J Phys D-Appl Phys, 1999, 32(4): 664–670

    Google Scholar 

  51. Şişman A, Saygın H. Re-optimization of Otto power cycles working with ideal quantum gases. Phys Scr, 2001, 64(2): 108–112

    Article  Google Scholar 

  52. Hasan H, Şişman A. Quantum degeneracy effect on the work output from a Stirling cycle. J Appl Phys, 2001, 90(6): 3086–3089

    Article  Google Scholar 

  53. Wu F, Chen L, Sun F, et al. Quantum degeneracy effect on performance of irreversible Otto cycle with deal Bose gas. Energy Convers Mgmt, 2006, 47(18–19): 3008–3018

    Article  Google Scholar 

  54. Wang H, Liu S, He J. Optimum criteria of an irreversible quantum Brayton refrigeration cycle with an ideal Bose gas. Physica B, 2008, 403(21–22): 3867–3878

    Article  ADS  Google Scholar 

  55. Zhang Y, Lin B, Chen J. The performance characteristics of an irreversible regenerative quantum refrigeration cycle. Phys Scr, 2006, 73(1): 48–55

    Article  MATH  ADS  Google Scholar 

  56. Bender C M, Brody D C, Meister B D. Quantum mechanical Carnot engine. J Phys A-Math Gen, 2000, 33(24): 4427–4436

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Angulo-Brown F. An ecological optimization criterion for finite-time heat engines. J Appl Phys, 1991, 69(11): 7465–7469

    Article  ADS  Google Scholar 

  58. Yan Z. Comment on “ecological optimization criterion for finite-time heat engines”. J Appl Phys, 1993, 73(7): 3583

    Article  ADS  Google Scholar 

  59. Chen L, Sun F, Chen W. The ecological figures of merit for thermodynamic cycles (in Chinese). J Eng Thermal Energy Pow, 1994, 9(6): 374–376

    Google Scholar 

  60. Arias-Hernandez L A, Angulo-Brown F. A general property of endoreversible thermal engines. J Appl Phys, 1997, 81(7): 2973–2979

    Article  ADS  Google Scholar 

  61. Angulo-Brown F, Arias-Hernandez L A, Paez-Hernandez. A general property of non-endoreversible thermal cycles. J Phys D-Appl Phys, 1999, 32(12): 1415–1420

    Article  ADS  Google Scholar 

  62. Cheng C Y, Chen C K. Ecological optimization of an endoreversible Brayton cycle. Energy Convers Mgmt, 1998, 39(1/2): 33–44

    Article  MathSciNet  Google Scholar 

  63. Tyagi S K, Kaushik S C, Salhotra R. Ecological optimization and performance study of irreversible Stirling and Ericsson heat engines. J Phys D-Appl Phys, 2002, 35(20): 2668–2675

    Article  ADS  Google Scholar 

  64. Chen L, Zhou J, Sun F, et al. Ecological optimization for generalized irreversible Carnot engines. Appl Energy, 2004, 77(3): 327–338

    Article  Google Scholar 

  65. Tyagi S K, Chen J, Lin G, et al. Ecological optimization of an irreversible Ericsson cryogenic refrigerator cycle. Int J Energy Res, 2005, 29(13): 1191–1204

    Article  Google Scholar 

  66. Chen L, Zhu X, Sun F, et al. Ecological optimization for generalized irreversible Carnot refrigerators. J Phys D-Appl Phys, 2005, 38(1): 113–118

    Article  ADS  Google Scholar 

  67. Chen L, Zhu X, Sun F, et al. Exergy-based ecological optimization for a generalized irreversible Carnot heat pump. Appl Energy, 2007, 84(1): 78–88

    Article  Google Scholar 

  68. Sogut O S, Ust Y, Sahin B. The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. J Phys D-Appl Phys, 2006, 39(21): 4713–4721

    Article  ADS  Google Scholar 

  69. Barranco-Jiménez M A, Sánchez-Salas N. On thermodynamic optimization of solar collector model under maximum ecological conditions. J Energy Inst, 2008, 81(3): 164–167

    Article  Google Scholar 

  70. Ust Y. Performance analysis and optimization of irreversible air refrigeration cycles based on ecological coefficient of performance criterion. Appl Thermal Engng, 2009, 29(1): 47–55

    Article  Google Scholar 

  71. Chen T H. Ecological optimization of quantum spin-1/2 heat engine at the classical limit. J Phys D-Appl Phys, 2006, 39(7): 1442–1450

    Article  ADS  Google Scholar 

  72. Wu F, Chen L, Sun F, et al. Ecological optimization performance of an irreversible quantum Otto cycle working with an ideal Fermi gas. Open Syst Inf Dyn, 2006, 13(1): 55–66

    Article  MATH  MathSciNet  Google Scholar 

  73. Zeng J. Quantum Mechanics (vol 1) (in Chinese). 3rd ed. Beijing: Science Press, 2000

    Google Scholar 

  74. Lin Z. Thermodynamics and Statistic Physics (in Chinese). Beijing: Peking University Press, 2007

    Google Scholar 

  75. Andresen B, Salamon P, Berry R S. Thermodynamics in finite time: Extremals for imperfect heat engines. J Chem Phys, 1977, 66(4): 1571–1577

    Article  ADS  Google Scholar 

  76. Chen L, Sun F, Chen W. The power vs. efficiency characteristics of an irreversible heat engine: Heat resistance and heat leak as an illustration (in Chinese). Chin Sci Bull, 1993, 38(5): 480

    Google Scholar 

  77. Chen L, Sun F, Wu C. A generalized model of a real heat engine and its performance. J Inst Energy, 1996, 69(481): 214–222

    Google Scholar 

  78. Chen L, Sun F, Wu C. Effect of heat transfer law on the performance of a generalized irreversible Carnot engine. J Phys D-Appl Phys, 1999, 32(2): 99–105

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 50846040), Program for New Century Excellent Talents in University (Grant No. NCET-04-1006) and the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (Grant No. 200136)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Chen, L., Wu, F. et al. Ecological optimization of an irreversible harmonic oscillators Carnot heat engine. Sci. China Ser. G-Phys. Mech. Astron. 52, 1976–1988 (2009). https://doi.org/10.1007/s11433-009-0300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0300-1

Keywords

Navigation