Skip to main content
Log in

The minimum heat consumption for heat-driven binary separation processes with linear phenomenological heat transfer law

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

The optimal performance of heat-driven binary separation processes with linear phenomenological heat transfer law (q∝Δ(T −1)) is analyzed by taking the processes as heat engines which work between high- and low-temperature reservoirs and produce enthalpy and energy flows out of the system, and the temperatures of the heat reservoirs are assumed to be time- and space-variables. A numerical method is employed to solve convex optimization problem and Lagrangian function is employed to solve the average optimal control problem. The dimensionless entropy production rate coefficient and dimensionless enthalpy flow rate coefficient are adopted to indicate the major influence factors on the performance of the separation process, such as the properties of different materials and various separation requirements for the separation process. The dimensionless minimum average entropy production rate and dimensionless minimum average heat consumption of the heat-driven binary separation processes are obtained. The obtained results are compared with those obtained with the Newtonian heat transfer law (q∝Δ(T)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bejan A. Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J Appl Phys, 1996, 79(3): 1191–1215

    Article  CAS  Google Scholar 

  2. Chen L, Sun F, Wu C. Finite time thermodynamics optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn, 1999, 24(3): 327–359

    Article  CAS  Google Scholar 

  3. Berry R S, Kazakov V A, Sieniutycz S, Szwast Z, Tsirlin A M. Thermodynamic Optimization of Finite-time Processes. Chichester: John Wiley & Sons Ltd., 1999

    Google Scholar 

  4. Chen L, Sun F. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers, 2004

    Google Scholar 

  5. Chen L. Finite time Thermodynamic Analysis of Irreversible Processes and Cycles (in Chinese). Beijing: Higher Education Press, 2005

    Google Scholar 

  6. Wu F, Chen L, Sun F, Yu J. Finite time Thermodynamic Optimization of Stirling Engine (in Chinese). Beijing: Chemical Industry Press, 2008

    Google Scholar 

  7. Wang J, He J, Mao Z. Performance of a quantum heat engine cycle working with harmonic oscillator systems. Sci China Ser G-Phys Mech Astron, 2007, 50(2): 163–176

    Article  Google Scholar 

  8. Song H, Chen L, Sun F. Optimal configuration of a class of endoreversible heat engines for maximum efficiency with radiative hat transfer law. Sci China Ser G-Phys Mech Astron, 2008, 51(9): 1272–1286

    Article  Google Scholar 

  9. Xia D, Chen L, Sun F. Optimal performance of a generalized irreversible isothermal chemical potential transformer. Sci China Ser B-Chem, 2008, 51(10): 958–970

    Article  CAS  Google Scholar 

  10. Curzon F L, Ahlborn B. Efficiency of a Carnot engine at maximum power output. Am J Phys, 1975, 43(1): 22–24

    Article  Google Scholar 

  11. Orlov V N, Berry R S. Power output from an irreversible heat engine with a nonuniform working fluid. Phys Rev A, 1990, 42(6): 7230–7235

    Article  Google Scholar 

  12. Shu L, Chen L, Sun F, Wu C. Thermodynamic optimization of distillation, separation, drying and reaction processes and devices: The state of the arts. Int J Energy, Environ Econo, 2006, 12(4): 203–214

    Google Scholar 

  13. Mullins O C, Berry R S. Minimization of entropy production in distillation. J Phys Chem, 1984, 88(4): 723–728

    Article  CAS  Google Scholar 

  14. Brown G R, Snow S, Andresen B, Salamon P. Finite-time thermodynamics of a porous plug. Phys Rev A, 1986, 34(4): 4370–4379

    Article  CAS  Google Scholar 

  15. Kazakov V A, Berry R S. Estimation of productivity, efficiency, and entropy production for cyclic separation processes with a distributed working fluid. Phys Rev E, 1994, 49(4): 2928–2934

    Article  CAS  Google Scholar 

  16. Tsirlin A M, Kazakov V A, Zubov D V. Finite-time thermodynamics: Limiting possibilities of irreversible separation processes. J Phys Chem A, 2002, 106(45): 10926–10936

    Article  CAS  Google Scholar 

  17. Schaller M, Hoffmann K H, Rivero R, Andresen B, Salamon P. The influence of heat transfer irreversibilities on the optimal performance of diabatic distillation columns. J Non-Equilib Thermodyn., 2002, 27(3): 257–269

    Article  Google Scholar 

  18. Koeijer G D, Rosjorde A, Kjelstrup S. The role of heat exchangers in optimum diabatic distillation columns. Proc ECOS2002, 2002, Berlin, Germany. 437–445

  19. Koeijer G D, Rosjorde A, Kjelstrup S. Distribution of heat exchange in optimum diabatic distillation columns. Energy The Int J, 2004, 29(12–15): 2425–2440

    Google Scholar 

  20. Jimenez E S, Salamon P, Rivero R. Optimization of a diabatic distillation column with sequential heat exchangers. In: Rivero R, Monroy L, Pulido R, Tsatsaronis G, eds. Proc ECOS2004,, Guanjuato, Mexico. Vol.1, 179–188

  21. Shu L, Chen L, Sun F. Performance optimization of a diabatic distillation column by allocating sequential heat exchanger inventory. Appl Energy, 2007, 84(9): 893–903

    Article  CAS  Google Scholar 

  22. Orlov V N, Berry R S. Estimation of minimal heat consumption for heat-driven separation processes via methods of finite-time thermodynamics. J Phys Chem, 1991, 95(14): 5624–5628

    Article  CAS  Google Scholar 

  23. De Vos A. Efficiency of some heat engines at maximum power conditions. Am J Phys, 1985, 53(6): 570–573

    Article  Google Scholar 

  24. Gordon J M. Observations on efficiency of heat engines operating at maximum power. Am J Phys, 1990, 58(4): 370–375

    Article  Google Scholar 

  25. Chen L, Bi Y, Wu C. Unified description of endoreversible cycles for another linear heat transfer law. Int J Energy, Environ Econo, 1999, 9(2): 77–93

    Google Scholar 

  26. Chen L, Sun F, Wu C. Optimal expansion of a heated working fluid with phenomenological heat transfer. Energy Convers Mgmt, 1998, 39(3/4): 149–156

    Article  CAS  Google Scholar 

  27. Chen L, Sun F, Wu C. Effect of heat transfer law on the performance of a generalized irreversible Carnot engine. J Phys D: Appl Phys, 1999, 32(2): 99–105

    Article  CAS  Google Scholar 

  28. Chen L, Zhou S, Sun F, Wu C. Optimal configuration and performance of heat engines with heat leak and finite heat capacity. Open Sys Inform Dynam, 2002, 9(1): 85–96

    Article  Google Scholar 

  29. Chen L, Zhu X, Sun F, Wu C. Optimal configurations and performance for a generalized Carnot cycle assuming the heat transfer law Q∝(ΔT)m. Appl Energy, 2004, 78(3): 305–313

    Article  Google Scholar 

  30. Sieniutycz S, Kuran P. Modeling thermal behavior and work flux in finite-rate systems with radiation. Int J Heat Mass Transfer, 2006, 49(17–18): 3264–3283

    Article  Google Scholar 

  31. Song H, Chen L, Li J, Sun F, Wu C. Optimal configuration of a class of endoreversible heat engines with linear phenomenological heat transfer law [q ∝ Δ (T −1)]. J Appl Phys, 2006, 100(12): 124907

    Google Scholar 

  32. Song H, Chen L, Sun F. Optimal expansion of a heated working fluid for maximum work output with generalized radiative heat transfer law. J Appl Phys, 2007, 102(9): 094901

    Article  CAS  Google Scholar 

  33. Chen L, Li J, Sun F. Generalized irreversible heat-engine experiencing a complex heat-transfer law. Appl Energy, 2008, 85(1): 52–60

    Article  Google Scholar 

  34. Li J, Chen L, Sun F. Heating load vs. COP characteristic of an endoreversible Carnot heat pump subjected to heat transfer law q ∝ (ΔT n)m. Appl Energy, 2008, 85(2–3): 96–100

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LinGen Chen.

Additional information

Supported by the Program for New Century Excellent Talents of China (Grant No. NCET-04-1006) and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200136)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, L., Chen, L. & Sun, F. The minimum heat consumption for heat-driven binary separation processes with linear phenomenological heat transfer law. Sci. China Ser. B-Chem. 52, 1154–1163 (2009). https://doi.org/10.1007/s11426-009-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0066-3

Keywords

Navigation