Skip to main content
Log in

Geometric Optimization of T-shaped Fin and Inverted Fin Based on Minimum Entropy Generation Objective

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

Since energy management is one of the most critical concerns, it is essential to determine the engineering construct irreversibility. Determination of entropy generation as a basis for evaluation of the irreversibility of heat transfer processes has become a significant method to reflect the heat transfer quality. The current study is dedicated to geometric optimization of T-shaped fins and inverted fins (cavities) using the constructal method to reach the minimum entropy generation as the optimization objective. The temperature distribution is determined according to a 1D analytical model and a 2D numerical model for a T-shaped fin and a T-shaped cavity, respectively. Furthermore, a comparison is made between the present optimal designs relying on entropy generation minimization (EGM) and the optimal designs presented in the literature and based on thermal conductance maximization (TCM) for the fin and hotspot temperature minimization (HTM) for the cavity. While the two optimization approaches have the same constraints, the results reveal that the optimal designs mainly have significant dependence on the type of optimization objective. However, it is shown that the T-shaped fin optimized via EGM produces 24% less entropy than the design optimized by TCM, with the thermal conductance lower only by 4%. On the other hand, the EGM-based optimal cavity generates entropy by about 8% less than that of the HTM-based optimal cavity, with an approximately 19% rise in the hotspot temperature. Considering both objectives for a more comprehensive comparison, the current article introduces a multi-objective optimization for fin and cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

REFERENCES

  1. Nagarani, N., Mayilsamy, K., Murugesan, A., and Kumar, G.S., Review of Utilization of Extended Surfaces in Heat Transfer Problems, Renew. Sustain. Energy Rev., 2014, vol. 29, pp. 604–613; DOI: 10.1016/J.RSER.2013.08.068

    Article  Google Scholar 

  2. Hajmohammadi, M.R., Optimal Design of Tree-Shaped Inverted Fins, Int. J. Heat Mass Transfer, 2018, vol. 116, pp. 1352–1360; DOI: 10.1016/J.IJHEATMASSTRANSFER.2017.09.042

    Article  Google Scholar 

  3. Reis, A.H., Constructal Theory: From Engineering to Physics, and How Flow Systems Develop Shape and Structure, Appl. Mech. Rev., 2006, vol. 59, no. 5, pp. 269–282; DOI: 10.1115/1.2204075

    Article  ADS  Google Scholar 

  4. Bejan, A., Constructal Tree Network for Fluid Flow between a Finite-Size Volume and One Source or Sink, Rev. Génér. Therm., 1997, vol. 36, no. 8, pp. 592–604; https://doi.org/10.1016/S0035-3159(97)89986-2.

    Article  Google Scholar 

  5. Lucia, U., Grisolia, G., Dolcino, G., Astori, M.R., Massa, E., and Ponzetto, A., Constructal Approach to Bio-Engineering: The Ocular Anterior Chamber Temperature, Sci. Rep., 2016, vol. 6, no. 1, p. 31099; DOI: 10.1038/srep31099

    Article  ADS  Google Scholar 

  6. Lucia, U., Grisolia, G., and Astori, M.R., Constructal Law Analysis of Cl- Transport in Eyes Aqueous Humor, Sci. Rep., 2017, vol. 7, no. 1, p. 6856; DOI: 10.1038/s41598-017-07357-8

    Article  ADS  Google Scholar 

  7. Dutra, R.F., Zinani, F.S.F., Rocha, L.A.O., and Biserni, C., Effect of Non-Newtonian Fluid Rheology on an Arterial Bypass Graft: A Numerical Investigation Guided by Constructal Design, Comput. Methods Programs Biomed., 2021, vol. 201, p. 105944; DOI: 10.1016/j.cmpb.2021.105944

    Article  Google Scholar 

  8. Hajmohammadi, M.R., Mohammadifar, M., and Ahmadian-Elmi, M., Optimal Placement and Sizing of Heat Sink Attachments on a Heat-Generating Piece for Minimization of Peak Temperature, Thermochim. Acta, 2020, vol. 689, p. 178645; https://doi.org/10.1016/j.tca.2020.178645.

    Article  Google Scholar 

  9. Hajmohammadi, M.R., Poozesh, S., and Nourazar, S.S., Constructal Design of Multiple Heat Sources in a Square-Shaped Fin, Proc. Inst. Mech. Eng., Part E, J. Process Mech. Eng., 2012, vol. 226, no. 4, pp. 324–336; DOI: 10.1177/0954408912447720

    Article  Google Scholar 

  10. Ahmadian-Elmi, M., Mohammadifar, M, Rasouli, E., and Hajmohammadi, M.R., Optimal Design and Placement of Heat Sink Elements Attached on a Cylindrical Heat-Generating Body for Maximum Cooling Performance, Thermochim. Acta, 2021, vol. 700, p. 178941; https://doi.org/10.1016/j.tca.2021.178941

    Article  Google Scholar 

  11. Chen, L., Yang, A., Feng, H., Ge, Y., and Xia, S., Constructal Design Progress for Eight Types of Heat Sinks, Sci. China Technol. Sci., 2020, vol. 63, no. 6, pp. 879–911; DOI: 10.1007/s11431-019-1469-1

    Article  ADS  Google Scholar 

  12. Ahmadian-Elmi, M., Mashayekhi, A., Nourazar, S.S., and Vafai, K., A Comprehensive Study on Parametric Optimization of the Pin-Fin Heat Sink to Improve Its Thermal and Hydraulic Characteristics, Int. J. Heat Mass Transfer, 2021, vol. 180, p. 121797; https://doi.org/10.1016/j.ijheatmasstransfer.2021.121797.

    Article  Google Scholar 

  13. Bejan, A. and Almogbel, M., Constructal T-Shaped Fins, Int. J. Heat Mass Transfer, 2000, vol. 43, no. 12, pp. 2101–2115; https://doi.org/10.1016/S0017-9310(99)00283-5.

    Article  MATH  Google Scholar 

  14. Almogbel, M.A., Constructal Tree-Shaped Fins, Int. J. Therm. Sci., 2005, vol. 44, no. 4, pp. 342–348; https://doi.org/10.1016/j.ijthermalsci.2004.11.002.

    Article  Google Scholar 

  15. Lorenzini, G. and Oliveira Rocha, L.A., Constructal Design of Y-Shaped Assembly of Fins, Int. J. Heat Mass Transfer, 2006, vol. 49, no. 23, pp. 4552–4557; https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.019.

    Article  MATH  Google Scholar 

  16. Lorenzini, G. and Rocha, L.A.O., Constructal Design of T–Y Assembly of Fins for an Optimized Heat Removal, Int. J. Heat Mass Transfer, 2009, vol. 52, no. 5, pp. 1458–1463; https://doi.org/10.1016/ j.ijheatmasstransfer.2008.09.007.

    Article  MATH  Google Scholar 

  17. Xie, Z., Chen, L., and Sun, F., Constructal Optimization of Twice Y-Shaped Assemblies of Fins by Taking Maximum Thermal Resistance Minimization as Objective, Sci. China Technol. Sci., 2010, vol. 53, no. 10, pp. 2756–2764; DOI: 10.1007/s11431-010-4037-x

    Article  ADS  MATH  Google Scholar 

  18. Biserni, C., Rocha, L.A.O., and Bejan, A., Inverted Fins: Geometric Optimization of the Intrusion into a Conducting Wall, Int. J. Heat Mass Transfer, 2004, vol. 47, no. 12, pp. 2577–2586; https://doi.org/ 10.1016/j.ijheatmasstransfer.2003.12.018.

    Article  MATH  Google Scholar 

  19. Rocha, L.A.O., Montanari, G.C., dos Santos, E.D., and Rocha, A.daS., Constructal Design Applied to the Study of Cavities into a Solid Conducting Wall, Rev. Eng. Térmica, vol. 6, no. 1, 2007; https:// revistas.ufpr.br/reterm/article/view/61816.

    Article  Google Scholar 

  20. Lorenzini, G. and Rocha, L.A.O., Geometric Optimization of T–Y-Shaped Cavity According to Constructal Design, Int. J. Heat Mass Transfer, 2009, vol. 52, no. 21, pp. 4683–4688; https://doi.org/ 10.1016/j.ijheatmasstransfer.2009.06.020.

    Article  MATH  Google Scholar 

  21. Lorenzini, G., Biserni, C., Isoldi, L.A., dos Santos, E.D., and Rocha, L.A.O., Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium, J. Electron. Packag., 2011, vol. 133, no. 4; DOI: 10.1115/1.4005296

  22. Biserni, C., Rocha, L.A.O., Stanescu, G., and Lorenzini, E., Constructal H-Shaped Cavities According to Bejan’s Theory, Int. J. Heat Mass Transfer, 2007, vol. 50, no. 11, pp. 2132–2138; https://doi.org/10.1016/ j.ijheatmasstransfer.2006.11.006.

    Article  MATH  Google Scholar 

  23. Lorenzini, G., Biserni, C., Link, F.B., dos Santos, E.D., Isoldi, L.A., and Rocha, L.A.O., Constructal Design of Isothermal X-Shaped Cavities, Therm. Sci., 2014, vol. 18, no. 2, pp. 349–356; DOI: 10.2298/TSCI120804005L

    Article  Google Scholar 

  24. Hajmohammadi, M.R., Introducing a Ψ-Shaped Cavity for Cooling a Heat Generating Medium, Int. J. Therm. Sci., 2017, vol. 121, pp. 204–212; https://doi.org/10.1016/j.ijthermalsci.2017.07.010.

    Article  Google Scholar 

  25. Estrada, E.S.D., Barreto, E.X., Isoldi, L.A., dos Santos, E.D., Lorente, S., and Rocha, L.A.O., Constructal Design of Tree Shaped Cavities Inserted into a Cylindrical Body with Heat Generation, Int. J. Therm. Sci., 2020, vol. 152, p. 106342; https://doi.org/10.1016/j.ijthermalsci.2020.106342.

    Article  Google Scholar 

  26. Bejan, A., Second-Law Analysis in Heat Transfer and Thermal Design, Advances in Heat Transfer, 1982, vol. 15, pp. 1–58; https://doi.org/10.1016/S0065-2717(08)70172-2.

  27. Bejan, A., Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture, Int. J. Energy Res., 2002, vol. 26, no. 7, pp. 1–43; https://doi.org/10.1002/er.804.

    Article  Google Scholar 

  28. Kolenda, Z., Donizak, J., and Hubert, J., On the Minimum Entropy Production in Steady State Heat Conduction Processes, Energy, 2004, vol. 29, no. 12, pp. 2441–2460; https://doi.org/10.1016/ j.energy.2004.03.049.

    Article  Google Scholar 

  29. Ribeiro, P. and Queiros-Condé, D., On the Entropy Production of the Elemental Construct of the Constructal Designed Plate Generating Heat, Int. J. Therm. Sci., 2019, vol. 145, p. 106043; https://doi.org/ 10.1016/j.ijthermalsci.2019.106043.

    Article  Google Scholar 

  30. Li, W., Xie, Z., Xi, K., Xia, S., and Ge, Y., Constructal Optimization of Rectangular Microchannel Heat Sink with Porous Medium for Entropy Generation Minimization, Entropy, 2021, vol. 23, no. 11; DOI: 10.3390/e23111528

    Article  ADS  Google Scholar 

  31. Samal, S.K. and Moharana, M.K., Second Law Analysis of Recharging Microchannel Using Entropy Generation Minimization Method, Int. J. Mech. Sci., 2021, vol. 193, p. 106174; https://doi.org/10.1016/ j.ijmecsci.2020.106174.

    Article  Google Scholar 

  32. Jahanbakhshi, A., Ahmadi Nadooshan, A., and Bayareh, M., Investigation of Thermal Performance and Entropy Generation in a Microchannel Heatsink with a Wavy Channel Using Bio Nanofluid, Energy Equip. Syst., 2022, vol. 10, no. 1, pp. 27–40; DOI: 10.22059/ees.2022.251133

    MATH  Google Scholar 

  33. Bejan, A., A Study of Entropy Generation in Fundamental Convective Heat Transfer, J. Heat Transfer, 1979, vol. 101, no. 4, pp. 718–725; DOI: 10.1115/1.3451063

    Article  Google Scholar 

  34. Incropera, F.P., Lavine, A.S., Bergman, T.L., and DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 8th ed., New York, Wiley, 2017.

    Google Scholar 

  35. Cheng, C.H., Ma, W.P., and Huang, W.H., Numerical Predictions of Entropy Generations for Mixed Convective Flows in a Vertical Channel with Transverse Fin Array, Int. Commun. Heat Mass Transfer, 1994, vol. 21, no. 4, pp. 519–530; DOI: 10.1016/0735-1933(94)90051-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Zehisaadat, R. K. Khalajzadeh, M. R. Hajmohammadi or G. Lorenzini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehisaadat, S., Khalajzadeh, R.K., Hajmohammadi, M.R. et al. Geometric Optimization of T-shaped Fin and Inverted Fin Based on Minimum Entropy Generation Objective. J. Engin. Thermophys. 31, 668–687 (2022). https://doi.org/10.1134/S1810232822040129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232822040129

Navigation