Skip to main content
Log in

Structural disruption of melanin-like polymers with boosted UV protection

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Manipulating the energy structure of materials represents an efficient way to regulate their light absorption behaviors. For example, constructing donor-acceptor (D-A) structures to increase the polarizability and reduce the energy bandgap of local molecules has been widely used in the field of organic photovoltaics with ordered structures. Remarkably, even in disordered and chaotic systems such as melanin-like polydopamine (PDA), visible and near-infrared light absorption can be significantly improved using this strategy. However, there has been a noticeable dearth of research on the ultraviolet (UV) light absorption regulation of bioinspired polymers with disordered and chaotic architectures by tailoring the D-A microstructures. In this study, a series of benzoheterocyclic molecules with strong electron-donating features screened by molecular simulation calculations were involved in disrupting the D-A structures within PDA. The destruction of D-A structures promoted the increase of the energy band gap and finally boosted the UV absorption of PDA. The resulting PDA nanoparticles with enhanced UV absorption were further employed to fabricate UV shielding composite films to protect the growth of plants from harmful UV radiation. This research may open up new avenues for structural disruption of bioinspired polymers for enhanced photoprotection applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noonan FP, Recio JA, Takayama H, Duray P, Anver MR, Rush WL, De Fabo EC, Merlino G. Nature, 2001, 413: 271–272

    Article  CAS  PubMed  Google Scholar 

  2. Corbyn Z. Nature, 2014, 515: S114–S116

    Article  PubMed  Google Scholar 

  3. Newsham KK, Robinson SA. Glob Change Biol, 2009, 15: 2574–2589

    Article  Google Scholar 

  4. Rodríguez-Calzada T, Qian M, Strid A, Neugart S, Schreiner M, Torres-Pacheco I, Guevara-González RG. Plant Physiol Biochem, 2019, 134: 94–102

    Article  PubMed  Google Scholar 

  5. Zhu P, Yang L. Field Crops Res, 2015, 171: 79–85

    Article  Google Scholar 

  6. Podolec R, Demarsy E, Ulm R. Annu Rev Plant Biol, 2021, 72: 793–822

    Article  CAS  PubMed  Google Scholar 

  7. Yang P, Zhu F, Zhang Z, Cheng Y, Wang Z, Li Y. Chem Soc Rev, 2021, 50: 8319–8343

    Article  CAS  PubMed  Google Scholar 

  8. Yang L, Zhang X, Zhang J, Hu J, Zhang T, Gu Z, Li Y. Acta Polym Sin, 2024, 55: 192–201

    CAS  Google Scholar 

  9. Jin Z, Yang L, Shi S, Wang T, Duan G, Liu X, Li Y. Adv Funct Mater, 2021, 31: 2103391

    Article  CAS  Google Scholar 

  10. Yang P, Bai W, Zou Y, Zhang X, Yang Y, Duan G, Wu J, Xu Y, Li Y. Mater Horiz, 2023, 10: 1020–1029

    Article  CAS  PubMed  Google Scholar 

  11. Yang P, Wang T, Zhang J, Zhang H, Bai W, Duan G, Zhang W, Wu J, Gu Z, Li Y. Sci China Chem, 2023, 66: 1520–1528

    Article  CAS  Google Scholar 

  12. Li C, Jia PP, Xu YL, Ding F, Yang WC, Sun Y, Li XP, Yin GQ, Xu L, Yang GF. Sci China Chem, 2021, 64: 134–142

    Article  CAS  Google Scholar 

  13. Chen WH, Chen QW, Chen Q, Cui C, Duan S, Kang Y, Liu Y, Liu Y, Muhammad W, Shao S, Tang C, Wang J, Wang L, Xiong MH, Yin L, Zhang K, Zhang Z, Zhen X, Feng J, Gao C, Gu Z, He C, Ji J, Jiang X, Liu W, Liu Z, Peng H, Shen Y, Shi L, Sun X, Wang H, Wang J, Xiao H, Xu FJ, Zhong Z, Zhang XZ, Chen X. Sci China Chem, 2022, 65: 1010–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Wan J, Xu G, Wu X, Li X, Shen Y, Yang F, Ou X, Li Y, Li Y. Sci China Chem, 2022, 65: 1164–1172

    Article  CAS  Google Scholar 

  15. Wang C, Wang D, Dai T, Xu P, Wu P, Zou Y, Yang P, Hu J, Li Y, Cheng Y. Adv Funct Mater, 2018, 28: 1802127

    Article  Google Scholar 

  16. Yang Z, Zhang J, Liu H, Hu J, Wang X, Bai W, Zhang W, Yang Y, Gu Z, Li Y. CCS Chem, 2023, 5: 2389–2402

    Article  CAS  Google Scholar 

  17. Chang Z, Zhang S, Li F, Wang Z, Li J, Xia C, Yu Y, Cai L, Huang Z. Chem Eng J, 2021, 404: 126505

    Article  CAS  Google Scholar 

  18. Wei L, Ma J, Zhang W, Bai SL, Ren Y, Zhang L, Wu Y, Qin J. Carbon, 2021, 181: 212–224

    Article  CAS  Google Scholar 

  19. Xu Y, Hu J, Hu J, Cheng Y, Chen X, Gu Z, Li Y. Prog Polym Sci, 2023, 146: 101740

    Article  CAS  Google Scholar 

  20. Bai W, Yang P, Zhang H, Wang T, Yang Y, Zhang X, Duan G, Xu Y, Li Y. Macromolecules, 2023, 56: 4566–4574

    Article  CAS  Google Scholar 

  21. Lee HA, Park E, Lee H. Adv Mater, 2020, 32: 1907505

    Article  CAS  Google Scholar 

  22. Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Chem Rev, 2022, 122: 14180–14274

    Article  CAS  PubMed  Google Scholar 

  23. Yen H, Chen C, Liou G. Adv Funct Mater, 2013, 23: 5307–5316

    Article  CAS  Google Scholar 

  24. Liu W, Xu X, Yuan J, Leclerc M, Zou Y, Li Y. ACS Energy Lett, 2021, 6: 598–608

    Article  CAS  Google Scholar 

  25. Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Adv Mater, 2022, 34: 2107330

    Article  CAS  Google Scholar 

  26. Qin C, Wu X, Tang L, Chen X, Li M, Mou Y, Su B, Wang S, Feng C, Liu J, Yuan X, Zhao Y, Wang H. Nat Commun, 2023, 14: 5238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie Z, Wang W, Ke X, Cai X, Chen X, Wang S, Lin W, Wang X. Appl Catal B-Environ, 2023, 325: 122312

    Article  CAS  Google Scholar 

  28. Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, Liu X, Li Y. ACS Appl Mater Interfaces, 2021, 13: 7617–7624

    Article  CAS  PubMed  Google Scholar 

  29. Ma ZY, Li DY, Jia X, Wang RL, Zhu MF. Chin JPolym Sci, 2023, 41: 699–712

    Article  CAS  Google Scholar 

  30. Wang X, Yang L, Yang P, Guo W, Zhang QP, Liu X, Li Y. Sci China Chem, 2020, 63: 1295–1305

    Article  CAS  Google Scholar 

  31. Zou Y, Chen X, Yang P, Liang G, Yang Y, Gu Z, Li Y. Sci Adv, 2020, 6: eabb4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai W, Xiang P, Liu H, Guo H, Tang Z, Yang P, Zou Y, Yang Y, Gu Z, Li Y. Macromolecules, 2022, 55: 6426–6434

    Article  CAS  Google Scholar 

  33. Ju KY, Fischer MC, Warren WS. ACS Nano, 2018, 12: 12050–12061

    Article  CAS  PubMed  Google Scholar 

  34. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G. Wallingford: Gaussian Inc., 2009

  35. Zhang J, Lu T. Phys Chem Chem Phys, 2021, 23: 20323–20328

    Article  CAS  PubMed  Google Scholar 

  36. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  37. Yang L, Gu B, Chen Z, Yue Y, Wang W, Zhang H, Liu X, Ren S, Yang W, Li Y. ACS Appl Mater Interfaces, 2019, 11: 30360–30367

    Article  CAS  PubMed  Google Scholar 

  38. Lan Z, Wu M, Fang Z, Chi X, Chen X, Zhang Y, Wang X. Angew Chem Int Ed, 2021, 60: 16355–16359

    Article  CAS  Google Scholar 

  39. Ramsey AV, Bischoff AJ, Francis MB. J Am Chem Soc, 2021, 143: 7342–7350

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Chen Z, Yang P, Hu J, Wang Z, Li Y. Polym Chem, 2019, 10: 4194–4200

    Article  CAS  Google Scholar 

  41. Meunier DM, Lyons JW, Kiefer JJ, Niu QJ, DeLong LM, Li Y, Russo PS, Cueto R, Edwin NJ, Bouck KJ, Silvis HC, Tucker CJ, Kalantar TH. Macromolecules, 2014, 47: 6715–6729

    Article  CAS  Google Scholar 

  42. Xu D, Wang W, Miao C, Zhang Q, Xia C, Sun W. Green Chem, 2013, 15: 2975–2980

    Article  CAS  Google Scholar 

  43. Sanchez RS, Zhuravlev FA. J Am Chem Soc, 2007, 129: 5824–5825

    Article  CAS  PubMed  Google Scholar 

  44. Wu A, Chen Q, Liu W, You L, Fu Y, Zhang H. Org Chem Front, 2018, 5: 1811–1814

    Article  CAS  Google Scholar 

  45. Liang J, Jiao Y, Jaroniec M, Qiao SZ. Angew Chem Int Ed, 2012, 51: 11496–11500

    Article  CAS  Google Scholar 

  46. Han JC, Wang SF, Deng R, Wu QY. Chin J Polym Sci, 2022, 40: 1233–1241

    Article  CAS  Google Scholar 

  47. Wang T, Qiblawey H, Judd S, Benamor A, Nasser MS, Mohammadian A. J Membrane Sci, 2018, 552: 222–233

    Article  CAS  Google Scholar 

  48. Shi X, Yang P, Peng X, Huang C, Qian Q, Wang B, He J, Liu X, Li Y, Kuang T. Polymer, 2019, 170: 65–75

    Article  CAS  Google Scholar 

  49. Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W. ACS Appl Mater Interfaces, 2017, 9: 36281–36289

    Article  CAS  PubMed  Google Scholar 

  50. Lu J, Fang J, Li J, Zhu L. Appl Surf Sci, 2021, 550: 149284

    Article  CAS  Google Scholar 

  51. Xiong S, Zhang C, Huang R, Luo K, Zhu X, Tong G. Polymer, 2021, 221: 123603

    Article  CAS  Google Scholar 

  52. Huang BH, Li SY, Chiou YJ, Chojniak D, Chou SC, Wong VCM, Chen SY, Wu PW. Carbohydrate Polyms, 2021, 273: 118560

    Article  CAS  Google Scholar 

  53. Xiong S, Wang Y, Yu J, Chen L, Zhu J, Hu Z. J Mater Chem A, 2014, 2: 7578–7587

    Article  CAS  Google Scholar 

  54. Yu J, Wei D, Li S, Tang Q, Li H, Zhang Z, Hu W, Zou Z. Int J Biol Macromol, 2022, 210: 654–662

    Article  CAS  PubMed  Google Scholar 

  55. Panagopoulos I, Bornman JF, Björn LO. J Photochem Photobiol B-Biol, 1990, 8: 73–87

    Article  CAS  Google Scholar 

  56. Guidi L, Degl’Innocenti E, Remorini D, Biricolti S, Fini A, Ferrini F, Nicese FP, Tattini M. Environ Exp Bot, 2011, 70: 88–95

    Article  CAS  Google Scholar 

  57. Li X, Luo J, Han K, Shi X, Ren Z, Xi Y, Ying Y, Ping J, Wang ZL. Nat Food, 2022, 3: 133–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52225311), the 1-3-5 Project for Disciplines of Excellence at West China Hospital (ZYYC23003), and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haoxing Wu or Yiwen Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Wang, X., Bai, W. et al. Structural disruption of melanin-like polymers with boosted UV protection. Sci. China Chem. 67, 1653–1663 (2024). https://doi.org/10.1007/s11426-023-1928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1928-3

Navigation