Skip to main content
Log in

Highly Red Emissive Conjugated Homopolymers Based on Double B←N Bridged Bipyridine Unit

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Conjugated homopolymers based on six-member rings, e.g., polyfluorene, always exhibit blue emission and conjugated homopolymers based on five-member rings, e.g., polythiophene, can give red emission with low efficiency. In this work, we report a series of new conjugated homopolymers based on six-member rings with high-efficiency deep-red emission. The repeating units of the red light emitting homopolymers are double B←N bridged bipyridine (BNBP) with the boron atoms functionalized with diphenyl, borafluorene, and 2,7-di-tert-butyl-borafluorene groups, respectively. The relationship between the chemical structures and the opto-electronic properties of the monomers and the homopolymers has been systematically studied. The three polymers emit pure red light (λmax=656 nm) or deep red light (λmax=693 nm) with fluorescence quantum efficiency in solution higher than 60%. The polymers can be used as the emitters in solution-processed organic light-emitting diodes with red emission and decent device performance. This work indicates a new strategy to design highly efficient light emitting conjugated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The related data (DOI: 10.57760/sciencedb.j00189.00021) for this paper is available in the Data Repository of China Association for Science and Technology (https://www.scidb.cn/c/cjps).

References

  1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.

    Article  CAS  Google Scholar 

  2. Heeger, A. J. Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611.

    Article  CAS  Google Scholar 

  3. Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat. Photon. 2011, 5, 753–757.

    Article  CAS  Google Scholar 

  4. Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832–1908.

    Article  CAS  Google Scholar 

  5. Huang, W. Polymers for flexible electronics. Chinese J. Polym. Sci. 2022, 40, 1513–1514.

    Article  CAS  Google Scholar 

  6. Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M. R.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer. Adv. Opt. Mater. 2016, 4, 2068–2076.

    Article  CAS  Google Scholar 

  7. Ostroverkhova, O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016, 116, 13279–13412.

    Article  CAS  PubMed  Google Scholar 

  8. Tang, S.; Murto, P.; Xu, X.; Larsen, C.; Wang, E.; Edman, L. Intense and stable near-infrared emission from light-emitting electrochemical cells comprising a metal-free indacenodithieno[3,2-b]thiophene-based copolymer as the single emitter. Chem. Mat. 2017, 29, 7750–7759.

    Article  CAS  Google Scholar 

  9. Bai, L.; Sun, C.; Han, Y.; Wei, C.; An, X.; Sun, L.; Sun, N.; Yu, M.; Zhang, K.; Lin, J.; Xu, M.; Xie, L.; Ling, H.; Cabanillas-Gonzales, J.; Song, L.; Hao, X.; Huang, W. Steric poly(diarylfluorene-co-benzothiadiazole) for efficient amplified spontaneous emission and polymer light-emitting diodes: benefit from preventing interchain aggregation and polaron formation. Adv. Opt. Mater. 2020, 8, 1901616.

    Article  CAS  Google Scholar 

  10. Liu, Y.; Hua, L.; Yan, S.; Ren, Z. Halognnated π-conjugated polymeric emitters with thermally activated delayed fluorescence for highly efficient polymer light emitting diodes. Nano Energy 2020, 73, 104800.

    Article  CAS  Google Scholar 

  11. Gon, M.; Wakabayashi, J.; Nakamura, M.; Tanaka, K.; Chujo, Y. Controlling energy gaps of pi-conjugated polymers by multi-fluorinated boron-fused azobenzene acceptors for highly efficient near-infrared emission. Chem. Asian J. 2021, 16, 696–703.

    Article  CAS  PubMed  Google Scholar 

  12. Guo, X.; Zhang, Y.; Hu, Y.; Yang, J.; Li, Y.; Ni, Z.; Dong, H.; Hu, W. Molecular weight engineering in high-performance ambipolar emissive mesopolymers. Angew. Chem. Int. Ed. 2021, 60, 14902–14908.

    Article  CAS  Google Scholar 

  13. Wang, T.; Zou, Y.; Huang, Z.; Li, N.; Miao, J.; Yang, C. Narrowband emissive TADF conjugated polymers towards highly efficient solution-processible OLEDs. Angew. Chem. Int. Ed. 2022, 61, e202211172.

    Article  CAS  Google Scholar 

  14. Li, X.; Yan, L.; Liu, S.; Wang, S.; Rao, J.; Zhao, L.; Tian, H.; Ding, J.; Wang, L. Polymerized thermally activated delayed-fluorescence small molecules: long-axis polymerization leads to a nearly concentration-independent luminescence. Angew. Chem. Int. Ed. 2023, 62, e202300529.

    Article  CAS  Google Scholar 

  15. Nakamura, M.; Gon, M.; Tanaka, K.; Chujo, Y. Solid-state near-infrared emission of π-conjugated polymers consisting of boron complexes with vertically projected steric substituents. Macromolecules 2023, 56, 2709–2718.

    Article  CAS  Google Scholar 

  16. He, Z. W.; Zhang, Q.; Li, C. X.; Han, H. T.; Lu, Y. Synthesis of thieno[3,4-b]pyrazine-based alternating conjugated polymers via direct arylation for near-infrared OLED applications. Chinese J. Polym. Sci. 2022, 40, 138–146.

    Article  CAS  Google Scholar 

  17. Pei, Q.; Yang, Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc. 1996, 118, 7416–7417.

    Article  CAS  Google Scholar 

  18. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Interplay of physical structure and photophysics for a liquid crystalline polyfluorene. Macromolecules 1999, 32, 5810–5817.

    Article  CAS  Google Scholar 

  19. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with light-emitting polymers. Adv. Mater. 2000, 12, 1737–1750.

    Article  CAS  Google Scholar 

  20. Leclerc, M. Polyfluorenes: twenty years of progress. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 2867–2873.

    Article  CAS  Google Scholar 

  21. List, E. J. W.; Guentner, R.; Scanducci de Freitas, P.; Scherf, U. The effect of Keto defect sites on the emission properties of polyfluorene-type materials. Adv. Mater. 2002, 14, 374–378.

    Article  CAS  Google Scholar 

  22. Wang, M.; Li, Y.; Xie, Z.; Wang, L. Polyfluorenes containing pyrazine units: synthesis, photophysics and electroluminescence. Sci. China Chem. 2011, 54, 656–665.

    Article  CAS  Google Scholar 

  23. Sun, M. L.; Zhong, C. M.; Li, F.; Pei, Q. B. Purified polar polyfluorene for light-emitting diodes and light-emitting electrochemical cells. Chinese J. Polym. Sci. 2012, 30, 503–510.

    Article  CAS  Google Scholar 

  24. Braun, D.; Gustafsson, G.; McBranch, D.; Heeger, A. J. Electroluminescence and electrical transport in poly(3-octylthiophene) diodes. J. Appl. Phys. 1992, 72, 564–568.

    Article  CAS  Google Scholar 

  25. Ruseckas, A.; Namdas, E. B.; Theander, M.; Svensson, M.; Yartsev, A.; Zigmantas, D.; Andersson, M. R.; Inganäs, O.; Sundström, V. Luminescence quenching by inter-chain aggregates in substituted polythiophenes. J. Photochem. Photobiol. A-Chem. 2001, 144, 3–12.

    Article  CAS  Google Scholar 

  26. Brown, P. J.; Thomas, D. S.; Köhler, A.; Wilson, J. S.; Kim, J.-S.; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 2003, 67, 064203.

    Article  Google Scholar 

  27. Barbarella, G.; Melucci, M.; Sotgiu, G. The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater. 2005, 17, 1581–1593.

    Article  CAS  Google Scholar 

  28. Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu, J.; Wang, L. An electron-deficient building block based on the B←N Unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436–1440.

    Article  CAS  Google Scholar 

  29. Long, X.; Ding, Z.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Polymer acceptor based on double B←N bridged bipyridine (BNBP) unit for high-efficiency all-polymer solar cells. Adv. Mater. 2016, 28, 6504–6508.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, Z.; Miao, J.; Ding, Z.; Kan, B.; Lin, B.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; Zhang, J.; Liu, J.; Wang, L. Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 2019, 10, 3271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mat. 2020, 32, 1308–1314.

    Article  CAS  Google Scholar 

  32. Cao, X.; Li, H.; Hu, J.; Tian, H.; Han, Y.; Meng, B.; Liu, J.; Wang, L. An amorphous n-type conjugated polymer with an ultra-rigid planar backbone. Angew. Chem. Int. Ed. 2023, 62, e202212979.

    Article  CAS  Google Scholar 

  33. Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. A distannylated monomer of a strong electron-accepting organoboron building block: enabling acceptor-acceptor-type conjugated polymers for n-type thermoelectric applications. Angew. Chem. Int. Ed. 2021, 60, 16184–16190.

    Article  CAS  Google Scholar 

  34. Wang, J.; Zhao, R.; Zhang, L.; Miao, J.; Liu, J.; Wang, L. A Direct surface modification strategy of ITO anodes enables high-performance organic photodetectors. J. Mater. Chem. C 2023, 11, 14421–14428.

    Article  CAS  Google Scholar 

  35. Long, X.; Li, D.; Wang, B.; Jiang, Z.; Xu, W.; Wang, B.; Yang, D.; Xia, Y. Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 2019, 58, 11369–11373.

    Article  CAS  Google Scholar 

  36. Hübner, A.; Diefenbach, M.; Bolte, M.; Lerner, H. W.; Holthausen, M. C.; Wagner, M. Confirmation of an early postulate: B-C-B two-electron-three-center bonding in organo(hydro)boranes. Angew. Chem. Int. Ed. 2012, 51, 12514–12518.

    Article  Google Scholar 

  37. Müller, M.; Maichle-Mössmer, C.; Bettinger, H. F. BN-phenanthryne: cyclotetramerization of an 1,2-azaborine derivative. Angew. Chem. Int. Ed. 2014, 53, 9380–9383.

    Article  Google Scholar 

  38. Liu, Q.; Yang, L.; Yao, C.; Geng, J.; Wu, Y.; Hu, X. Controlling the lewis acidity and polymerizing effectively prevent frustrated lewis pairs from deactivation in the hydrogenation of terminal alkynes. Org. Lett. 2021, 23, 3685–3690.

    Article  CAS  PubMed  Google Scholar 

  39. Müller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Multicolour organic light-emitting displays by solution processing. Nature 2003, 421, 829–833.

    Article  PubMed  Google Scholar 

  40. Li, B.; Xu, X.; Sun, M.; Fu, Y.; Yu, G.; Liu, Y.; Bo, Z. Porphyrin-cored star polymers as efficient nondoped red light-emitting materials. Macromolecules 2006, 39, 456–461.

    Article  CAS  Google Scholar 

  41. Qu, B.; Chen, Z.; Liu, Y.; Cao, H.; Xu, S.; Cao, S.; Lan, Z.; Wang, Z.; Gong, Q. Orange and red emitting OLEDs based on phenothiazine polymers. J. Phys. D: Appl. Phys. 2006, 39, 2680.

    Article  CAS  Google Scholar 

  42. Gather, M. C.; Köhnen, A.; Falcou, A.; Becker, H.; Meerholz, K. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Adv. Funct. Mater. 2007, 17, 191–200.

    Article  CAS  Google Scholar 

  43. Wang, T.; Li, K.; Yao, B.; Chen, Y.; Zhan, H.; Xie, Z.; Xie, G.; Yi, X.; Cheng, Y. Rigidity and polymerization amplified red thermally activated delayed fluorescence polymers for constructing red and single-emissive-layer white OLEDs. Adv. Funct. Mater. 2020, 30, 2002493.

    Article  CAS  Google Scholar 

  44. Fan, Q.; Liu, Y.; Hao, Z.; Li, C.; Wang, Y.; Tan, H.; Zhu, W.; Cao, Y. Polymer light-emitting devices based on europium(III) complex with 11-bromo-dipyrido[3,2-a:2′,3′-c]phenazine. Sci. China Chem. 2015, 58, 1152–1158.

    Article  CAS  Google Scholar 

  45. Chen, L. L.; Peng, L.; Wang, L. Y.; Zhu, X. H.; Zou, J. H.; Peng, J. Molecular engineering of an electron-transport triarylphosphine oxide-triazine conjugate toward high-performance phosphorescent organic light-emitting diodes with remarkable stability. Sci. China Chem. 2020, 63, 904–910.

    Article  CAS  Google Scholar 

  46. Tao, Y.; Yang, C.; Qin, J. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943–2970.

    Article  CAS  PubMed  Google Scholar 

  47. Yook, K. S.; Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 2014, 26, 4218–4233.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22135007 and 52073281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YY., Zhang, KY., Wang, SM. et al. Highly Red Emissive Conjugated Homopolymers Based on Double B←N Bridged Bipyridine Unit. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3123-7

Keywords

Navigation