Skip to main content
Log in

Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane For Minimizing Internal Concentration Polarization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Forward osmosis (FO) as an energy-saving membrane process has attracted much attention in food concentration, water treatment, and desalination. Thin film composite (TFC) membrane is the most popular FO membrane, but it suffers from the internal concentration polarization (ICP), which significantly limits the water flux and FO efficiency. In this report, we demonstrate a novel and high-performing thin film nanocomposite (TFN) membrane that employs a hydrophilic interlayer composed of imogolite nanotubes (INTs) and polydopamine (PDA). The INTs can be adhered to the porous substrate by the self-polymerization of PDA, and the as-prepared PDA/INTs interlayer displays a nanostructured network with outstanding hydrophilicity. The detailed investigation was conducted to understand the relationship between the structure and property of the PDA/INTs interlayer and the morphology and performance of the TFN membrane. The TFN membrane with the PDA/INTs interlayer performs a thinner and smoother polyamide selective layer. Correspondingly, the TFN membrane shows a water flux of 18.38 L·m−2·h−1, which is 2.18 times of the pristine TFC membrane. Moreover, the TFN membrane has a minimized structural parameter (577 µm), almost a half of that of the pristine one (949 ·m). It reveals that the ICP effect of TFC membrane can be effectively alleviated by using a hydrophilic PDA/INTs interlayer. This TFN membrane with a satisfactory water permeability is promising in terms of future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qasim, M.; Badrelzaman, M.; Darwish, N. N.; Darwish, N. A.; Hilal, N. Reverse osmosis desalination: a state-of-the-art review. Desalination 2019, 459, 59–104.

    Article  CAS  Google Scholar 

  2. Cao, S.; Rathi, P.; Wu, X.; Ghim, D.; Jun, Y. S.; Singamaneni, S. Cellulose nanomaterials in interfacial evaporators for desalination: a “natural” choice. Adv. Mater. 2020, e2000922.

  3. Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A. P.; Tong, T.; Warsinger, D. M.; Elimelech, M. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 2018, 11, 1177–1196.

    Article  CAS  Google Scholar 

  4. Suwaileh, W.; Pathak, N.; Shon, H.; Hilal, N. Forward osmosis membranes and processes: a comprehensive review of research trends and future outlook. Desalination 2020, 485, 114455.

    Article  CAS  Google Scholar 

  5. Lutchmiah, K.; Verliefde, A. R. D.; Roest, K.; Rietveld, L. C.; Cornelissen, E. R. Forward osmosis for application in wastewater treatment: a review. Water Res. 2014, 58, 179–197.

    Article  CAS  Google Scholar 

  6. Cath, T. Y.; Childress, A. E.; Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87.

    Article  CAS  Google Scholar 

  7. Rong, K.; Zhang, T. C. Forward osmosis: mass transmission coefficient-based models for evaluation of concentration polarization under different conditions. J. Environ. Eng. 2018, 144(2), 04017095.

    Article  Google Scholar 

  8. Wu, Q. Y.; Xing, X. Y.; Yu, Y.; Gu, L.; Xu, Z. K. Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer 2018, 153, 150–160.

    Article  CAS  Google Scholar 

  9. Lim, S.; Van Huy, T.; Akther, N.; Phuntsho, S.; Shon, H. K. Defect-free outer-selective hollow fiber thin-film composite membranes for forward osmosis applications. J. Membr. Sci. 2019, 586, 281–291.

    Article  CAS  Google Scholar 

  10. Obaid, M.; Kang, Y.; Wang, S.; Yoon, M. H.; Kim, C. M.; Song, J. H.; Kim, I. S. Fabrication of highly permeable thin-film nanocomposite forward osmosis membranes via the design of novel freestanding robust nanofiber substrates. J. Mater. Chem. A 2018, 8, 11700–11713.

    Article  Google Scholar 

  11. Hoover, L. A.; Schiffman, J. D.; Elimelech, M. Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. Desalination 2013, 308, 73–81.

    Article  CAS  Google Scholar 

  12. Huang, L.; McCutcheon, J.R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. J. Membr. Sci. 2015, 483, 25–33.

    Article  CAS  Google Scholar 

  13. Song, X.; Zhang, Y.; Abdel-Ghafar, H. M.; Abdel-Aal, E. S. A.; Huang, M.; Gul, S.; Jiang, H. Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis. Chem. Eng. J. 2021, 412, 128607.

    Article  CAS  Google Scholar 

  14. Wang, S. F.; Yu, Y.; Wu, Q. Y. High-performance thin film composite forward osmosis membrane with polydopamine/polyethyleneimine (PDA/PEI) codeposition interlayer. Acta Polymerica Sinica (in Chinese) 2020, 51, 385–392.

    CAS  Google Scholar 

  15. Yu, F.; Shi, H.; Shi, J.; Teng, K.; Xu, Z.; Qian, X. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. J. Membr. Sci. 2020, 818, 118611.

    Article  Google Scholar 

  16. Zhou, Z.; Hu, Y.; Boo, C.; Liu, Z.; Li, J.; Deng, L.; An, X. High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer. Environ. Sci. Technol. Lett. 2018, 5, 243–248.

    Article  CAS  Google Scholar 

  17. Yang, Z.; Wang, F.; Guo, H.; Peng, L. E.; Ma, X. H.; Song, X. X.; Wang, Z.; Tang, C. Y. Mechanistic insights into the role of polydopamine interlayer toward improved separation performance of polyamide nanofiltration membranes. Environ. Sci. Technol. 2020, 54, 11611–11621.

    Article  CAS  Google Scholar 

  18. Zhao, X.; Li, J.; Liu, C. A novel TFC-type FO membrane with inserted sublayer of carbon nanotube networks exhibiting the improved separation performance. Desalination 2017, 413, 176–183.

    Article  CAS  Google Scholar 

  19. Wang, Y.; Li, X.; Zhao, S.; Fang, Z.; Ng, D.; Xie, C.; Wang, H.; Xie, Z. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance. Ind. Eng. Chem. Res. 2019, 58, 195–206.

    Article  CAS  Google Scholar 

  20. Shah, A. A.; Cho, Y. H.; Choi, H.; Nam, S. E.; Kim, J. F.; Kim, Y.; Park, H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J. Ind. Eng. Chem. 2019, 73, 276–285.

    Article  CAS  Google Scholar 

  21. Pan, Y. H.; Zhao, Q. Y.; Gu, L.; Wu, Q. Y. Thin film nanocomposite membranes based on imologite nanotubes blended substrates for forward osmosis desalination. Desalination 2017, 421, 160–168.

    Article  CAS  Google Scholar 

  22. Zheng, W.; Fan, H.; Wang, L.; Jin, Z. Oxidative self-polymerization of dopamine in an acidic environment. Langmuir 2015, 31, 11671–11677.

    Article  CAS  Google Scholar 

  23. Abu Tarboush, B. J.; Rana, D.; Matsuura, T.; Arafat, H. A.; Narbaitz, R. M. Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J. Membr. Sci. 2008, 325, 166–175.

    Article  Google Scholar 

  24. Zhang, C.; Xiang, L.; Zhang, J.; Liu, C.; Wang, Z.; Zeng, H.; Xu, Z. K. Revisiting the adhesion mechanism of musselinspired chemistry. Chem. Sci. 2022, 13, 169.

    Google Scholar 

  25. Chen, G.; Liu, R.; Shon, H. K.; Wang, Y.; Song, J.; Li, X. M.; He, T. Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater. Desalination 2017, 405, 76–84.

    Article  CAS  Google Scholar 

  26. Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518–521.

    Article  CAS  Google Scholar 

  27. Vyas, B. B.; Ray, P. Preparation of nanofiltration membranes and relating surface chemistry with potential and topography: application in separation and desalting of amino acids. Desalination 2015, 382, 104–116.

    Article  Google Scholar 

  28. Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894.

    Article  CAS  Google Scholar 

  29. Bao, X.; Wu, Q.; Tian, J.; Shi, W.; Wang, W.; Zhang, Z.; Zhang, R.; Zhang, B.; Guo, Y.; Shu, S.; Cui, F. Fouling mechanism of forward osmosis membrane in domestic wastewater concentration: role of substrate structures. Chem. Eng. J. 2019, 370, 262–273.

    Article  CAS  Google Scholar 

  30. Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19, 4791–4797.

    Article  CAS  Google Scholar 

  31. Tang, C. Y.; She, Q.; Lay, W. C. L.; Wang, R.; Fane, A. G. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 2010, 354, 123–133.

    Article  CAS  Google Scholar 

  32. Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D. Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci. 2012, 398, 1–21.

    Article  Google Scholar 

  33. Darabi, R. R.; Peyravi, M.; Jahanshahi, M.; Amiri, A. A. Q. Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate. Korean J. Chem. Eng. 2017, 34, 2311–2324.

    Article  CAS  Google Scholar 

  34. Li, W.; Gao, Y.; Tang, C. Y. Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis: model development and theoretical analysis with FEM. J. Membr. Sci. 2011, 379, 307–321.

    Article  CAS  Google Scholar 

  35. Yang, Z.; Ma, X. H.; Tang, C. Y. Recent development of novel membranes for desalination. Desalination 2018, 434, 37–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2021qntd13) and the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yun Wu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2776_MOESM1_ESM.pdf

Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane For Minimizing Internal Concentration Polarization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JC., Wang, SF., Deng, R. et al. Polydopamine/Imogolite Nanotubes (PDA/INTs) Interlayer Modulated Thin Film Composite Forward Osmosis Membrane For Minimizing Internal Concentration Polarization. Chin J Polym Sci 40, 1233–1241 (2022). https://doi.org/10.1007/s10118-022-2776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2776-3

Keywords

Navigation