Skip to main content
Log in

“Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Flexible transparent electrodes (FTEs) with robust mechanical stability are crucial for the industrial application of flexible organic solar cells (OSCs). However, their production remains challenging owing to the difficulty in balancing the conductivity, transmittance, and adhesion of FTEs to substrates. Herein, we present the so-called “reinforced concrete” strategy which fine-tunes the structure of silver nanowires (AgNWs)-based FTEs with polydopamine (PDA) possessing good adhesion properties and moderate reducibility. The PDA reduces Ag+ to form silver nanoparticles (AgNPs) which grow like “rivets” at the AgNW junction sites; PDA stabilizes the AgNW skeleton and improves the adhesion between the AgNWs and polyethylene ter-ephthalate (PET) substrate and interface layer. The obtained AgNW:PDA:AgNP FTE exhibits excellent optoelectronic properties and high mechanical stability. The resulting flexible OSCs exhibit 17.07% efficiency, high flexibility during 10,000 bending test cycles, and robust peeling stability. In addition, this “reinforced concrete”-like FTE provides great advantages for the production of large-area flexible OSCs, thereby paving a new way toward their commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  CAS  PubMed  Google Scholar 

  2. Qin F, Wang W, Sun L, Jiang X, Hu L, Xiong S, Liu T, Dong X, Li J, Jiang Y, Hou J, Fukuda K, Someya T, Zhou Y. Nat Commun, 2020, 11: 4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang D, Liu H, Li Y, Zhou G, Zhan L, Zhu H, Lu X, Chen H, Li CZ. Joule, 2021, 5: 945–957

    Article  CAS  Google Scholar 

  4. Lv Q, An C, Zhang T, Zhang J, Zhang S, Zhou P, He C, Hou J. Sci China Chem, 2021, 64: 1200–1207

    Article  CAS  Google Scholar 

  5. Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. Adv Mater, 2021, 33: 2101733

    Article  CAS  Google Scholar 

  6. Wang D, Zhou G, Li Y, Yan K, Zhan L, Zhu H, Lu X, Chen H, Li C. Adv Funct Mater, 2021, 32: 2107827

    Article  CAS  Google Scholar 

  7. Zhan L, Li S, Xia X, Li Y, Lu X, Zuo L, Shi M, Chen H. Adv Mater, 2021, 33: 2007231

    Article  CAS  Google Scholar 

  8. Xie Y, Ryu HS, Han L, Cai Y, Duan X, Wei D, Woo HY, Sun Y. Sci China Chem, 2021, 64: 2161–2168

    Article  CAS  Google Scholar 

  9. Chen S, Feng L, Jia T, Jing J, Hu Z, Zhang K, Huang F. Sci China Chem, 2021, 64: 1192–1199

    Article  CAS  Google Scholar 

  10. Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Méndez-Romero UA, Ma R, Yang T, Zhuang W, Li Y, Li Y, Kim TS, Hou L, Yang C, Yan H, Yu D, Wang E. Joule, 2020, 4: 658–672

    Article  CAS  Google Scholar 

  11. Chen S, Jung S, Cho HJ, Kim NH, Jung S, Xu J, Oh J, Cho Y, Kim H, Lee B, An Y, Zhang C, Xiao M, Ki H, Zhang ZG, Kim JY, Li Y, Park H, Yang C. Angew Chem Int Ed, 2018, 57: 13277–13282

    Article  CAS  Google Scholar 

  12. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    Article  CAS  Google Scholar 

  13. Wan J, Wen R, Xia Y, Dai M, Huang H, Xue L, Zhang Z, Fang J, Hui KN, Fan X. J Mater Chem A, 2021, 9: 5425–5433

    Article  CAS  Google Scholar 

  14. Cui H, Song W, Fanady B, Peng R, Zhang J, Huang J, Ge Z. Sci China Chem, 2019, 62: 500–505

    Article  CAS  Google Scholar 

  15. Shin DW, Barnes MD, Walsh K, Dimov D, Tian P, Neves AIS, Wright CD, Yu SM, Yoo JB, Russo S, Craciun MF. Adv Mater, 2018, 30: 1802953

    Article  CAS  Google Scholar 

  16. Liu Z, You P, Xie C, Tang G, Yan F. Nano Energy, 2016, 28: 151–157

    Article  CAS  Google Scholar 

  17. Sun L, Zeng W, Xie C, Hu L, Dong X, Qin F, Wang W, Liu T, Jiang X, Jiang Y, Zhou Y. Adv Mater, 2020, 32: 1907840

    Article  CAS  Google Scholar 

  18. Han J, Yang J, Gao W, Bai H. Adv Funct Mater, 2021, 31: 2010155

    Article  CAS  Google Scholar 

  19. Tang H, Feng H, Wang H, Wan X, Liang J, Chen Y. ACS Appl Mater Interfaces, 2019, 11: 25330–25337

    Article  CAS  PubMed  Google Scholar 

  20. Ahn S, Han TH, Maleski K, Song J, Kim YH, Park MH, Zhou H, Yoo S, Gogotsi Y, Lee TW. Adv Mater, 2020, 32: 2000919

    Article  CAS  Google Scholar 

  21. Song M, You DS, Lim K, Park S, Jung S, Kim CS, Kim DH, Kim DG, Kim JK, Park J, Kang YC, Heo J, Jin SH, Park JH, Kang JW. Adv Funct Mater, 2013, 23: 4177–4184

    Article  CAS  Google Scholar 

  22. Lan W, Chen Y, Yang Z, Han W, Zhou J, Zhang Y, Wang J, Tang G, Wei Y, Dou W, Su Q, Xie E. ACS Appl Mater Interfaces, 2017, 9: 6644–6651

    Article  CAS  PubMed  Google Scholar 

  23. Jing M, Li M, Chen C, Wang Z, Shen X. J Mater Sci, 2015, 50: 6437–6443

    Article  CAS  Google Scholar 

  24. Oh JS, Oh JS, Yeom GY. Nanomaterials, 2020, 10: 633–643

    Article  CAS  PubMed Central  Google Scholar 

  25. Zeng G, Zhang J, Chen X, Gu H, Li Y, Li Y. Sci China Chem, 2019, 62: 851–858

    Article  CAS  Google Scholar 

  26. Thomas JP, Shi Q, Abd-Ellah M, Zhang L, Heinig NF, Leung KT. ACS Appl Mater Interfaces, 2020, 12: 11459–11466

    Article  CAS  PubMed  Google Scholar 

  27. Kim S, Lee SJ, Cho S, Shin S, Jeong U, Myoung JM. Chem Commun, 2017, 53: 8292–8295

    Article  CAS  Google Scholar 

  28. Lee JH, Jeong YR, Lee G, Jin SW, Lee YH, Hong SY, Park H, Kim JW, Lee SS, Ha JS. ACS Appl Mater Interfaces, 2018, 10: 28027–28035

    Article  CAS  PubMed  Google Scholar 

  29. Lin MY, Chen TJ, Xu WF, Hsiao LJ, Budiawan W, Tu WC, Chen SL, Chu CW, Wei PK. Jpn J Appl Phys, 2018, 57: 03DD01

    Article  Google Scholar 

  30. Zilberberg K, Gasse F, Pagui R, Polywka A, Behrendt A, Trost S, Heiderhoff R, Görrn P, Riedl T. Adv Funct Mater, 2014, 24: 1671–1678

    Article  CAS  Google Scholar 

  31. Chen X, Xu G, Zeng G, Gu H, Chen H, Xu H, Yao H, Li Y, Hou J, Li Y. Adv Mater, 2020, 32: 1908478

    Article  CAS  Google Scholar 

  32. Qu T, Zuo L, Chen J, Shi X, Zhang T, Li L, Shen K, Ren H, Wang S, Xie F, Li Y, Jen AK, Tang J. Adv Opt Mater, 2020, 8: 2000669

    Article  CAS  Google Scholar 

  33. Zheng XQ, Cheng HY. Sci China Tech Sci, 2019, 62: 209–223

    Article  CAS  Google Scholar 

  34. Na JW, Kim HJ, Hong S, Kim HJ. ACS Appl Mater Interfaces, 2018, 10: 37207–37215

    Article  CAS  PubMed  Google Scholar 

  35. Lee H, Dellatore SM, Miller WM, Messersmith PB. Science, 2007, 318: 426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Li Y, Sheng M, Cui S, Wang Z, Zhang X, Yang C, Yu Z, Zhang Y, Tian S, Dai Z, Xu Q. Langmuir, 2019, 35: 4527–4533

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z, Yang HC, He F, Peng S, Li Y, Shao L, Darling SB. Matter, 2019, 1: 115–155

    Article  Google Scholar 

  38. Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M. Adv Funct Mater, 2013, 23: 1331–1340

    Article  CAS  Google Scholar 

  39. Ma A, Xie Y, Xu J, Zeng H, Xu H. Chem Commun, 2015, 51: 1469–1471

    Article  CAS  Google Scholar 

  40. Meng J, Xie J, Han X, Lu C. Appl Surf Sci, 2016, 371: 96–101

    Article  CAS  Google Scholar 

  41. Sureshkumar M, Siswanto DY, Chen YC, Lee CK, Wang MJ. J Polym Sci B Polym Phys, 2013, 51: 303–310

    Article  CAS  Google Scholar 

  42. Tan L, Wang Y, Zhang J, Xiao S, Zhou H, Li Y, Chen Y, Li Y. Adv Sci, 2019, 6: 1801180

    Article  CAS  Google Scholar 

  43. Chang JY, Chang JJ, Lo B, Tzing SH, Ling YC. Chem Phys Lett, 2003, 379: 261–267

    Article  CAS  Google Scholar 

  44. Rabinovich YI, Esayanur MS, Moudgil BM. Langmuir, 2005, 21: 10992–10997

    Article  CAS  PubMed  Google Scholar 

  45. Duan H, Berggren KK. Nano Lett, 2010, 10: 3710–3716

    Article  CAS  PubMed  Google Scholar 

  46. Zhang K, Li J, Fang Y, Luo B, Zhang Y, Li Y, Zhou J, Hu B. Nanoscale, 2018, 10: 12981–12990

    Article  CAS  PubMed  Google Scholar 

  47. Yan X, Ma J, Xu H, Wang C, Liu Y. J Phys D-Appl Phys, 2016, 49: 325103

    Article  CAS  Google Scholar 

  48. Ahmad N, Zhang X, Yang S, Zhang D, Wang J, Zafar S, Li Y, Zhang Y, Hussain S, Cheng Z, Kumaresan A, Zhou H. J Mater Chem C, 2019, 7: 10795–10801

    Article  CAS  Google Scholar 

  49. Mao L, Chen Q, Li Y, Li Y, Cai J, Su W, Bai S, Jin Y, Ma CQ, Cui Z, Chen L. Nano Energy, 2014, 10: 259–267

    Article  CAS  Google Scholar 

  50. Choi S, Potscavage Jr. WJ, Kippelen B. J Appl Phys, 2009, 106: 054507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51922074, 22075194, 51820105003), the National Key Research and Development Program of China (2020YFB1506400), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJA430010), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaowen Li.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2022_1242_MOESM1_ESM.pdf

“Reinforced Concrete”-Like Flexible Transparent Electrode for Organic Solar Cells with High Efficiency and Mechanical Robustness

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wan, J., Xu, G. et al. “Reinforced concrete”-like flexible transparent electrode for organic solar cells with high efficiency and mechanical robustness. Sci. China Chem. 65, 1164–1172 (2022). https://doi.org/10.1007/s11426-022-1242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1242-9

Navigation