Skip to main content
Log in

Recent advances in efficient emissive materials-based OLED applications: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present time, organic light-emitting diode (OLED) is a very promising participant over light-emitting diodes (LEDs), liquid crystal display (LCD), and also another solid-state lighting device due to its low cost, ease of fabrication, brightness, speed, wide viewing angle, low power consumption, and high contrast ratio. The most prominent layer of OLED is the emissive layer because the device emission color, contrast ratio, and external efficiency depend of this layer’s materials. This review ruminates on the basics of OLEDs, different light emission mechanisms, OLEDs achievements, and different types of challenges revealed in the field of OLEDs. This review’s primary intention is to broadly discuss the synthesizing methods, physicochemical properties of conducting polymer polymethyl methacrylate (PMMA), and its polymeric nanocomposite-based emissive layer materials for OLEDs application. It also discusses the most extensively used OLED fabrication techniques. PMMA-based polymeric nanocomposites revealed good transparency properties, good thermal stability, and high electrical conductivity, making suitable materials as an emissive layer for OLED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Copyright 2019 Elsevier

Figure 16
Figure 17

Copyright 2018 springer

Figure 18

Copyright 2018 springer

Figure 19
Figure 20

Copyright 2021 Elsevier

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25

Similar content being viewed by others

References

  1. Patil SS, Bhat TS, Teli AM et al (2020) Hybrid Solid State Supercapacitors (HSSC’s) for High Energy & Power Density: An Overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  2. Deokate RJ (2020) Chemically Deposited NiCo2O4 Thin Films for Electrochemical Study. ES Mater Manuf. https://doi.org/10.30919/esmm5f938

    Article  Google Scholar 

  3. Satpute SD, Jagtap JS, Bhujbal PK et al (2020) Mercurochrome sensitized ZnO / In 2 O 3 photoanode for dye-sensitized solar cell. ES Energy Environ 9:89–94

    CAS  Google Scholar 

  4. Barma SV, Rondiya SR, Jadhav YA et al (2020) Structural, Optoelectronic, and Photoelectrochemical Investigation of CdSe NC’s Prepared by Hot Injection Method. ES Mater Manuf. https://doi.org/10.30919/esmm5f1040

    Article  Google Scholar 

  5. Shi J, Huang X, Guo H et al (2020) Experimental Investigation and Numerical Validation on the Energy-Saving Performance of A passive Phase Change Material Floor for A Real Scale Building. ES Energy Environ. https://doi.org/10.30919/esee8c380

    Article  Google Scholar 

  6. Socaciu LG (2012) Thermal energy storage with phase change material. Leonardo Electron J Pract Technol 11:75–98. https://doi.org/10.1201/9780367567699

    Article  Google Scholar 

  7. Huang J, Luo Y, Weng M et al (2021) Advances and Applications of Phase Change Materials (PCMs) and PCMs-based Technologies. ES Mater Manuf. https://doi.org/10.30919/esmm5f458

    Article  Google Scholar 

  8. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Elsevier Ltd

  9. Supekar A, Kapadnis R, Bansode S et al (2020) Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy Environ. https://doi.org/10.30919/esee8c706

    Article  Google Scholar 

  10. Rahane GK, Jathar SB, Rondiya SR et al (2020) Photoelectrochemical Investigation on the Cadmium Sulfide (CdS) Thin Films Prepared using Spin Coating Technique. ES Mater Manuf. https://doi.org/10.30919/esmm5f1041

    Article  Google Scholar 

  11. Hussain R, Mehboob MY, Khan MU et al (2021) Efficient designing of triphenylamine-based hole transport materials with outstanding photovoltaic characteristics for organic solar cells. J Mater Sci 56:5113–5131. https://doi.org/10.1007/s10853-020-05567-6

    Article  CAS  Google Scholar 

  12. Hou W, Xiao Y, Han G, Lin JY (2019) The applications of polymers in solar cells: A review. Polymers (Basel) 11:1–46. https://doi.org/10.3390/polym11010143

    Article  CAS  Google Scholar 

  13. Reza Reisi A, Hassan Moradi M, Jamasb S (2013) Classification and comparison of maximum power point tracking techniques for the photovoltaic system: A review. Renew Sustain Energy Rev 19:433–443. https://doi.org/10.1016/j.rser.2012.11.052

    Article  Google Scholar 

  14. Ya’u Muhammad J, Bello Waziri A, Muhammad Shitu A et al (2019) Recent Progressive Status of Materials for Solar Photovoltaic Cell: A Comprehensive Review. Sci J Energy Eng. https://doi.org/10.11648/j.sjee.20190704.14

    Article  Google Scholar 

  15. Singh R, Choudhary RB (2021) Ag/AgCl sensitized n-type ZnO and p-type PANI composite as an active layer for hybrid solar cell application. Optik (Stuttg) 225:165766. https://doi.org/10.1016/j.ijleo.2020.165766

    Article  CAS  Google Scholar 

  16. Aleshin AN, Shcherbakov IP, Trapeznikova IN (2014) Temperature and concentration dependences of the photoluminescence of MEH-PPV polymer composite films with ZnO nanoparticles. Phys Solid State 56:405–411. https://doi.org/10.1134/S1063783414020024

    Article  CAS  Google Scholar 

  17. Singh R, Choudhary RB, Kandulna R (2019) Optical band gap tuning and thermal properties of PMMA-ZnO sensitized polymers for efficient exciton generation in solar cell application. Mater Sci Semicond Process 103:104623. https://doi.org/10.1016/j.mssp.2019.104623

    Article  CAS  Google Scholar 

  18. Hu H, Ding F, Ding H et al (2020) Sulfonated poly(fluorenyl ether ketone)/Sulfonated α-zirconium phosphate Nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3:498–507. https://doi.org/10.1007/s42114-020-00182-0

    Article  CAS  Google Scholar 

  19. Ding F, Hu H, Ding H et al (2020) Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Adv Compos Hybrid Mater 3:546–550. https://doi.org/10.1007/s42114-020-00184-y

    Article  CAS  Google Scholar 

  20. Zhang C, Xie Y, Deng H et al (2019) Nitrogen-doped coal with high electrocatalytic activity for the oxygen reduction reaction. Eng Sci 8:39–45

    Google Scholar 

  21. Li D, Sun J, Ma R, Wei J (2020) High-efficient and Low-cost H2 Production by Solar-driven Photo-thermo-reforming of Methanol with CuO Catalyst. ES Energy Environ. https://doi.org/10.30919/esee8c722

    Article  Google Scholar 

  22. Yu M, Yu T, Chen S et al (2020) A Facile Synthesis of Ag/TiO2/rGO Nanocomposites with Enhanced Visible Light Photocatalytic Activity. ES Mater Manuf. https://doi.org/10.30919/esmm5f712

    Article  Google Scholar 

  23. Ke Y, Guo H, Wang D et al (2014) ZrO2/g-C3N4 with enhanced photocatalytic degradation of methylene blue under visible light irradiation. J Mater Res 29:2473–2482. https://doi.org/10.1557/jmr.2014.276

    Article  CAS  Google Scholar 

  24. Chen Y, Bai X (2020) A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts. https://doi.org/10.3390/catal10010142

    Article  Google Scholar 

  25. Tyan Y-S (2011) Organic light-emitting-diode lighting overview. J Photonics Energy 1:011009. https://doi.org/10.1117/1.3529412

    Article  Google Scholar 

  26. Thejo Kalyani N, Dhoble SJ (2012) Organic light-emitting diodes: Energy saving lighting technology - A review. Renew Sustain Energy Rev 16:2696–2723. https://doi.org/10.1016/j.rser.2012.02.021

    Article  CAS  Google Scholar 

  27. Mitschke U, Bäuerle P (2000) The electroluminescence of organic materials. J Mater Chem 10:1471–1507. https://doi.org/10.1039/a908713c

    Article  CAS  Google Scholar 

  28. Pode R (2020) Organic light-emitting diode devices: An energy-efficient solid-state lighting for applications. Renew Sustain Energy Rev 133:110043. https://doi.org/10.1016/j.rser.2020.110043

    Article  Google Scholar 

  29. Brütting W, Berleb S, Mückl AG (2001) Device physics of organic light-emitting diodes based on molecular materials. Org Electron 2:1–36. https://doi.org/10.1016/S1566-1199(01)00009-X

    Article  Google Scholar 

  30. Gather MC, Reineke S (2015) Recent advances in light out-coupling from white organic light-emitting diodes. J Photonics Energy 5:057607. https://doi.org/10.1117/1.jpe.5.057607

    Article  Google Scholar 

  31. Luo R, Li H, Du B et al (2020) A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org Electron 76:105451. https://doi.org/10.1016/j.orgel.2019.105451

    Article  CAS  Google Scholar 

  32. Yeh P, Yeh N, Lee CH, Ding TJ (2017) Applications of LEDs in optical sensors and chemical sensing devices to detect biochemicals, heavy metals, and environmental nutrients. Renew Sustain Energy Rev 75:461–468. https://doi.org/10.1016/j.rser.2016.11.011

    Article  CAS  Google Scholar 

  33. Wang Y, Liu P, Wang H et al (2019) Flexible organic light-emitting devices with copper nanowire composite transparent conductive electrode. J Mater Sci 54:2343–2350. https://doi.org/10.1007/s10853-018-2986-9

    Article  CAS  Google Scholar 

  34. Hong K, Lee JL (2011) Review paper: Recent developments in light extraction technologies of organic light-emitting diodes. Electron Mater Lett 7:77–91. https://doi.org/10.1007/s13391-011-0601-1

    Article  CAS  Google Scholar 

  35. Rana R, Mehra R (2019) Investigation of Organic LED Materials Using a Transparent Cathode for Improved Efficiency. J Electron Mater 48:4409–4417. https://doi.org/10.1007/s11664-019-07221-7

    Article  CAS  Google Scholar 

  36. Singh M, Jou JH, Sahoo S et al (2018) High light-quality OLEDs with a wet-processed single emissive layer. Sci Rep 8:2–10. https://doi.org/10.1038/s41598-018-24125-4

    Article  CAS  Google Scholar 

  37. Jolt Oostra A, Blom PWM, Michels JJ (2014) Prevention of short circuits in solution-processed OLED devices. Org Electron 15:1166–1172. https://doi.org/10.1016/j.orgel.2014.03.008

    Article  CAS  Google Scholar 

  38. Yuan Q, Wang T, Yu P et al (2021) A review on the electroluminescence properties of quantum-dot light-emitting diodes. Org Electron 90:106086. https://doi.org/10.1016/j.orgel.2021.106086

    Article  CAS  Google Scholar 

  39. Islam A, Rabbani M, Bappy MH, et al. (2013) A review on the fabrication process of organic light-emitting diodes. 2013 Int Conf Informatics, Electron Vision, ICIEV 2013. https://doi.org/10.1109/ICIEV.2013.6572656

  40. Yersin H (2012) Triplet Emitters for OLED Applications. Mech Exciton Trapping Control Emission Properties. https://doi.org/10.1007/b96858

    Article  Google Scholar 

  41. Chen S, Zhao X, Wu Q et al (2013) Efficient, color-stable flexible white top-emitting organic light-emitting diodes. Org Electron 14:3037–3045. https://doi.org/10.1016/j.orgel.2013.09.004

    Article  CAS  Google Scholar 

  42. Shinar J (2013) Organic light-emitting device. Springer, USA

    Google Scholar 

  43. Pode R, Diouf B (2011) solar lighting. Springer, South Korea

    Book  Google Scholar 

  44. Koden M (2017) OLED Fabrication Process. OLED Displays Light. https://doi.org/10.1002/9781119040477.ch6

    Article  Google Scholar 

  45. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913–915. https://doi.org/10.1063/1.98799

    Article  CAS  Google Scholar 

  46. Lakshmanan R, Daniel SCGK (2018) Engineered nanomaterials for organic light-emitting diodes (OLEDs). Elsevier Inc.

  47. Bochkarev MN, Katkova MA, Ilichev VA, Konev AN (2008) New cathode materials for organic light-emitting diodes: Tm: Yb and Eu:Yb. Nanotechnologies Russ 3:470–473. https://doi.org/10.1134/s1995078008070094

    Article  Google Scholar 

  48. Hasegawa T, Takeya J (2009) Organic field-effect transistors using single crystals. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/10/2/024314

    Article  Google Scholar 

  49. Xie ZY, Hung LS, Lee ST (2001) High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure. Appl Phys Lett 79:1048–1050. https://doi.org/10.1063/1.1390479

    Article  CAS  Google Scholar 

  50. Zheng XY, Zhu WQ, Wu YZ et al (2003) A white OLED based on DPVBi blue light-emitting host and DCJTB red dopant. Displays 24:121–124. https://doi.org/10.1016/j.displa.2003.09.004

    Article  CAS  Google Scholar 

  51. He Y, Cheng N, Xu X et al (2019) A high efficiency pure organic room temperature phosphorescence polymer PPV derivative for OLED. Org Electron 64:247–251. https://doi.org/10.1016/j.orgel.2018.10.012

    Article  CAS  Google Scholar 

  52. Park TJ, Jeon WS, Park JJ et al (2008) Efficient, simple structure red phosphorescent organic light-emitting devices with narrow bandgap fluorescent host. Appl Phys Lett 92:2006–2009. https://doi.org/10.1063/1.2896641

    Article  CAS  Google Scholar 

  53. Liu Z, Helander MG, Wang Z, Lu Z (2010) Band alignment at anode/organic interfaces for highly efficient simplified blue-emitting organic light-emitting diodes. J Phys Chem C 114:16746–16749. https://doi.org/10.1021/jp105782w

    Article  CAS  Google Scholar 

  54. Zhang ZQ, Liu YP, Dai YF et al (2014) High-efficiency phosphorescent white organic light-emitting diodes with stable emission spectrum based on RGB separately monochromatic emission layers. Chinese Phys Lett. https://doi.org/10.1088/0256-307X/31/4/046801

    Article  Google Scholar 

  55. Uoyama H, Goushi K, Shizu K et al (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492:234–238. https://doi.org/10.1038/nature11687

    Article  CAS  Google Scholar 

  56. Chen XK, Kim D, Brédas JL (2018) Thermally Activated Delayed Fluorescence (TADF) Path toward Efficient Electroluminescence in Purely Organic Materials: Molecular Level Insight. Acc Chem Res 51:2215–2224. https://doi.org/10.1021/acs.accounts.8b00174

    Article  CAS  Google Scholar 

  57. Yuan Y, Hu Y, Zhang YX et al (2017) Over 10% EQE Near-Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter. Adv Funct Mater 27:1–5. https://doi.org/10.1002/adfm.201700986

    Article  CAS  Google Scholar 

  58. Lee DR, Hwang SH, Jeon SK et al (2015) Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chem Commun 51:8105–8107. https://doi.org/10.1039/c5cc01940k

    Article  CAS  Google Scholar 

  59. Zhang D, Cai M, Zhang Y et al (2016) Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability. Mater Horizons 3:145–151. https://doi.org/10.1039/c5mh00258c

    Article  CAS  Google Scholar 

  60. Choi MK, Yang J, Hyeon T, Kim DH (2018) Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex Electron 2:1–14

    Article  CAS  Google Scholar 

  61. Ghamsari MS (2017) Introductory Chapter: Quantum-Dots Based Organic Light-Emitting Diodes - The State-of-the-Art. Quantum-dot Based Light Diodes. https://doi.org/10.5772/intechopen.69744

    Article  Google Scholar 

  62. Hazim A, Abduljalil HM, Hashim A (2020) Analysis of Structural and Electronic Properties of Novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2, PMMA/ZrO2-Ag, PMMA-Ag) Nanocomposites for Low-Cost Electronics and Optics Applications. Trans Electr Electron Mater 21:48–67. https://doi.org/10.1007/s42341-019-00148-0

    Article  Google Scholar 

  63. Song J, Kim KH, Kim E et al (2018) Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nat Commun. https://doi.org/10.1038/s41467-018-05671-x

    Article  Google Scholar 

  64. Singh J (2012) Organic Light-Emitting Devices, BOD- Books on demand.

  65. Chandra VK, Chandra BP, Jha P (2014) Organic light - Emitting diodes and their applications. Defect Diffus Forum 357:29–93

    Article  Google Scholar 

  66. Will PA, Schwarz EB, Fuchs C et al (2018) Scattering quantified: Evaluation of corrugation induced out-coupling concepts in organic light-emitting diodes. Org Electron 58:250–256. https://doi.org/10.1016/j.orgel.2018.04.016

    Article  CAS  Google Scholar 

  67. Xie B, Hu R, Yu X et al (2016) Effect of Packaging Method on Performance of Light-Emitting Diodes with Quantum Dot Phosphor. IEEE Photonics Technol Lett 28:1115–1118. https://doi.org/10.1109/LPT.2016.2531794

    Article  CAS  Google Scholar 

  68. Deshpande R, Pawar O, Kute A (2018) Advancement in the technology of organic light-emitting diodes. Proc 2017 Int Conf Innov Information, Embed Commun Syst ICIIECS 2017 2018-Janua:1–5. https://doi.org/10.1109/ICIIECS.2017.8276054

  69. Heydari N, Ghorashi SMB, Han W, Park H-H (2017) Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress. Quantum-dot Based Light Diodes. https://doi.org/10.5772/intechopen.69014

    Article  Google Scholar 

  70. Park J, Noh YY, Huh JW et al (2012) Optical and barrier properties of thin-film encapsulations for transparent OLEDs. Org Electron 13:1956–1961. https://doi.org/10.1016/j.orgel.2012.06.010

    Article  CAS  Google Scholar 

  71. Park S-HK, Hwang C-S, Lee J-I et al (2006) 4.3: Transparent ZnO Thin Film Transistor Array for the Application of Transparent AM-OLED Display. SID Symp Dig Tech Pap Doi 10(1889/1):2433472

    Google Scholar 

  72. Sempel A, Büchel M (2002) Design aspects of low power polymer/OLED passive-matrix displays. Org Electron 3:89–92. https://doi.org/10.1016/S1566-1199(02)00036-8

    Article  CAS  Google Scholar 

  73. Lääperi A (2013) Active-matrix, organic light-emitting diodes (AMOLEDs) for displays. Woodhead Publishing Limited

  74. Sabah K.Mahal, Ahmad J.Alimin (2017) Advancement in the technology of liquid desiccant systems.pdf. 191–199

  75. Jeon WS, Park TJ, Kim KH et al (2010) High-efficiency red phosphorescent organic light-emitting diodes with single-layer structure. Org Electron 11:179–183. https://doi.org/10.1016/j.orgel.2009.10.010

    Article  CAS  Google Scholar 

  76. Lian H, Shen J, Guo H et al (2019) Recent Advances in the Optimization of Organic Light-Emitting Diodes with Metal-Containing Nanomaterials. Chem Rec 19:1753–1767. https://doi.org/10.1002/tcr.201800204

    Article  CAS  Google Scholar 

  77. Tao J, Wang R, Yu H et al (2020) Highly Transparent, Highly Thermally Stable Nanocellulose/Polymer Hybrid Substrates for Flexible OLED Devices. ACS Appl Mater Interfaces 12:9701–9709. https://doi.org/10.1021/acsami.0c01048

    Article  CAS  Google Scholar 

  78. Gaspar DJ, Polikarpov E (2018) OLED fundamentals: materials, device and processing of organic lighting diode 1st edition CRC Press.

  79. Wang ZB, Helander MG, Lu ZH (2013) Transparent conducting thin films for OLEDs. Org Light Diodes Mater Devices Appl. https://doi.org/10.1533/9780857098948.1.49

    Article  Google Scholar 

  80. Kim SS, Park SP, Kim JH, Im S (2002) Photoelectric and optical properties of pentacene films deposited on n-Si by thermal evaporation. Thin Solid Films 420–421:19–22. https://doi.org/10.1016/S0040-6090(02)00653-3

    Article  Google Scholar 

  81. Chen CW, Hsieh PY, Chiang HH et al (2003) Top-emitting organic light-emitting devices using surface-modified Ag anode. Appl Phys Lett 83:5127–5129. https://doi.org/10.1063/1.1635076

    Article  CAS  Google Scholar 

  82. Jin YD, Ding XB, Reynaert J et al (2004) Role of LiF in polymer light-emitting diodes with LiF-modified cathodes. Org Electron 5:271–281. https://doi.org/10.1016/j.orgel.2004.08.001

    Article  CAS  Google Scholar 

  83. C, Choi JW, Kim B su, et al (2021) Efficient cathode contacts through Ag-doping in multifunctional strong nucleophilic electron transport layer for high-performance inverted OLEDs. Org Electron 89:106031. https://doi.org/10.1016/j.orgel.2020.106031

    Article  CAS  Google Scholar 

  84. Han TH, Song W, Lee TW (2015) Elucidating the crucial role of hole injection layer in degradation of organic light-emitting diodes. ACS Appl Mater Interfaces 7:3117–3125. https://doi.org/10.1021/am5072628

    Article  CAS  Google Scholar 

  85. Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010. https://doi.org/10.1021/cr050143+

    Article  CAS  Google Scholar 

  86. Sasabe H, Kido J (2013) Development of high-performance OLEDs for general lighting. J Mater Chem C 1:1699–1707. https://doi.org/10.1039/c2tc00584k

    Article  CAS  Google Scholar 

  87. Kandulna R, Choudhary RB (2017) Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik (Stuttg) 144:40–48. https://doi.org/10.1016/j.ijleo.2017.06.094

    Article  CAS  Google Scholar 

  88. Mandal G, Choudhary RB (2019) rGO–Y 2 O 3 intercalated PANI matrix (PANI–rGO–Y 2 O 3) based polymeric nanohybrid material as an electron transport layer for OLED application. Res Chem Intermed. https://doi.org/10.1007/s11164-019-03819-y

    Article  Google Scholar 

  89. Kandulna R, Choudhary RB, Singh R, Nayak D (2019) Augmented properties for PPY-PANI-ZnO nanocomposite as electron transport layer material for organic light-emitting diode (OLED) application. AIP Conf Proc. https://doi.org/10.1063/1.5113278

    Article  Google Scholar 

  90. Hu B, Ci Z, Liang L et al (2020) Spiro derivatives as electron-blocking materials for highly stable OLEDs. Org Electron 86:105879. https://doi.org/10.1016/j.orgel.2020.105879

    Article  CAS  Google Scholar 

  91. Hagen JA, Li W, Steckl AJ, Grote JG (2006) Enhanced emission efficiency in organic light-emitting diodes using the deoxyribonucleic acid complex as an electron blocking layer. Appl Phys Lett 88:10–13. https://doi.org/10.1063/1.2197973

    Article  CAS  Google Scholar 

  92. Negi S, Mittal P, Kumar B (2018) Impact of different layers on the performance of OLED. Microsyst Technol 24:4981–4989. https://doi.org/10.1007/s00542-018-3918-y

    Article  CAS  Google Scholar 

  93. Turkoglu G, Cinar ME, Ozturk T (2017) Triarylborane-based materials for OLED applications. Molecules. https://doi.org/10.3390/molecules22091522

    Article  Google Scholar 

  94. Sekine C, Tsubata Y, Yamada T et al (2014) Recent progress of high-performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/15/3/034203

    Article  Google Scholar 

  95. Erickson NC, Holmes RJ (2013) Investigating the role of emissive layer architecture on the exciton recombination zone in organic light-emitting devices. Adv Funct Mater 23:5190–5198. https://doi.org/10.1002/adfm.201300101

    Article  CAS  Google Scholar 

  96. Li X, Cui J, Ba Q et al (2019) Multiphotoluminescence from a Triphenylamine Derivative and Its Application in White Organic Light-Emitting Diodes Based on a Single Emissive Layer. Adv Mater 31:1–8. https://doi.org/10.1002/adma.201900613

    Article  CAS  Google Scholar 

  97. Friend RH, Gymer RW, Holmes AB et al (1999) Electroluminescence in conjugated polymers. Nature 397:121–128. https://doi.org/10.1038/16393

    Article  CAS  Google Scholar 

  98. Jin J, Lee JJ, Bae BS et al (2012) Silica nanoparticle-embedded sol-gel organic/inorganic hybrid nanocomposite for transparent OLED encapsulation. Org Electron 13:53–57. https://doi.org/10.1016/j.orgel.2011.09.008

    Article  CAS  Google Scholar 

  99. Park S, Suh M, Kim K et al (2019) Effect of the spatial molecular configuration of ZnO/ polyethyleneimine hybrid electron injection materials on OLEDs performance. Org Electron 75:105427. https://doi.org/10.1016/j.orgel.2019.105427

    Article  CAS  Google Scholar 

  100. Yuan Y, Krüger M (2012) Polymer-nanocrystal hybrid materials for light: Conversion applications. Polymers (Basel) 4:1–19. https://doi.org/10.3390/polym4010001

    Article  CAS  Google Scholar 

  101. Choudhary RB, Ansari S, Purty B (2020) Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J Energy Storage 29:101302. https://doi.org/10.1016/j.est.2020.101302

    Article  Google Scholar 

  102. Thakur AK, Choudhary RB, Majumder M, Majhi M (2018) Fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics (Kiel) 24:257–268. https://doi.org/10.1007/s11581-017-2183-x

    Article  CAS  Google Scholar 

  103. Li Q, Yan B (2019) Multi-component assembly of luminescent rare earth hybrid materials. J Rare Earths 37:113–123. https://doi.org/10.1016/j.jre.2018.10.001

    Article  CAS  Google Scholar 

  104. de Cuendias A, Urien M, Lecommandoux S et al (2006) Novel EDOT and fluorene-based electroluminescent “bricks” as materials for OLEDs. Org Electron 7:576–585. https://doi.org/10.1016/j.orgel.2006.09.004

    Article  CAS  Google Scholar 

  105. Jang KS, Kim DO, Lee JH et al (2010) Synchronous vapor-phase polymerization of Poly (3,4-ethylene dioxythiophene) and Poly (3-hexylthiophene) copolymer systems for tunable optoelectronic properties. Org Electron 11:1668–1675. https://doi.org/10.1016/j.orgel.2010.07.006

    Article  CAS  Google Scholar 

  106. Lian L, Dong D, Wang H, He G (2019) Highly reliable copper nanowire electrode with enhanced transmittance and robustness for organic light-emitting diodes. Org Electron 65:70–76. https://doi.org/10.1016/j.orgel.2018.11.002

    Article  CAS  Google Scholar 

  107. Wadatkar NS, Waghuley SA (2015) Complex optical studies on conducting polyindole as-synthesized through chemical route. Egypt J Basic Appl Sci 2:19–24. https://doi.org/10.1016/j.ejbas.2014.12.006

    Article  Google Scholar 

  108. Cariou JM, Dugas J, Martin L, Michel P (1986) Refractive-index variations with a temperature of PMMA and polycarbonate. Appl Opt 25:334. https://doi.org/10.1364/ao.25.000334

    Article  CAS  Google Scholar 

  109. Mansour AF, Elfalaky A, Maged FA (2015) Synthesis, Characterization and Optical properties of PANI/ PVA Blends. IOSR J Appl Phys 7:37–45. https://doi.org/10.9790/4861-07433745

    Article  Google Scholar 

  110. Ali U, Karim KJBA, Buang NA (2015) A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym Rev 55:678–705. https://doi.org/10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  111. Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2015) Surface Plasmon Resonance-Based Fiber Optic Methane Gas Sensor Utilizing Graphene-Carbon Nanotubes-Poly(Methyl Methacrylate) Hybrid Nanocomposite. Plasmonics 10:1147–1157. https://doi.org/10.1007/s11468-015-9914-5

    Article  CAS  Google Scholar 

  112. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2018) Potentially enlarged supercapacitive values for CdS-PPY decorated rGO nanocomposites as electrode materials. Mater Chem Phys 216:213–222. https://doi.org/10.1016/j.matchemphys.2018.06.015

    Article  CAS  Google Scholar 

  113. Purty B, Choudhary RB, Biswas A, Udayabhanu G (2019) Chemically grown mesoporous f-CNT/α-MnO 2 /PIn nanocomposites as electrode materials for supercapacitor application. Polym Bull 76:1619–1640. https://doi.org/10.1007/s00289-018-2458-z

    Article  CAS  Google Scholar 

  114. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C 28:1530–1543. https://doi.org/10.1016/j.msec.2008.04.010

    Article  CAS  Google Scholar 

  115. Nie W, Chen Y, Smith G et al (2014) Nano graphite platelets enhanced blue emission in alternating current field-induced polymer-based electroluminescence devices using Poly (9,9-dioctylfluorenyl-2,7-diyl) as the emitter. Org Electron 15:99–104. https://doi.org/10.1016/j.orgel.2013.10.032

    Article  CAS  Google Scholar 

  116. Goseki R, Ishizone T (2020) Encyclopedia of Polymeric Nanomaterials. Encycl Polym Nanomater. https://doi.org/10.1007/978-3-642-36199-9

    Article  Google Scholar 

  117. Ishizone T, Goseki R, Materials P (2020) Encyclopedia of Polymeric Nanomaterials. Encycl Polym Nanomater. https://doi.org/10.1007/978-3-642-36199-9

    Article  Google Scholar 

  118. Hamaudi ZT, Nugay N, Nugay T (2004) Anionic polymerization of methyl methacrylate as promoted by an N-butyl lithium-pyridazine-polyether alkoxide based complex initiator system. Turkish J Chem 28:387–394

    CAS  Google Scholar 

  119. Carotenuto G, Martorana B, Perlo P, Nicolais L (2003) A universal method for synthesizing metal and metal sulfide clusters embedded in polymer matrices. J Mater Chem 13:2927–2930. https://doi.org/10.1039/b310898h

    Article  CAS  Google Scholar 

  120. Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335. https://doi.org/10.1016/j.eurpolymj.2003.08.005

    Article  CAS  Google Scholar 

  121. Ullah M, Kausar A, Siddiq M et al (2015) Reinforcing Effects of Modified Nanodiamonds on the Physical Properties of Polymer-Based Nanocomposites: A Review. Polym - Plast Technol Eng 54:861–879. https://doi.org/10.1080/03602559.2014.979505

    Article  CAS  Google Scholar 

  122. Lakowicz JR, Gryczynski I, Gryczynski Z, Murphy CJ (1999) Luminescence spectral properties of CdS nanoparticles. J Phys Chem B 103:7613–7620. https://doi.org/10.1021/jp991469n

    Article  CAS  Google Scholar 

  123. Nayak D, Choudhary RB (2019) Augmented optical and electrical properties of PMMA-ZnS nanocomposites as an emissive layer for OLED applications. Opt Mater (Amst) 91:470–481. https://doi.org/10.1016/j.optmat.2019.03.040

    Article  CAS  Google Scholar 

  124. Abozaid RM, Lazarević Z, Radović I et al (2019) Optical properties and fluorescence of quantum dots CdSe/ZnS-PMMA composite films with interface modifications. Opt Mater (Amst) 92:405–410. https://doi.org/10.1016/j.optmat.2019.05.012

    Article  CAS  Google Scholar 

  125. Mohamed MB, Abdel-Kader MH (2020) Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2019.122285

    Article  Google Scholar 

  126. Ajibade PA, Mbese JZ (2014) Synthesis and characterization of metal sulfides nanoparticles/poly(methyl methacrylate) nanocomposites. Int J Polym Sci. https://doi.org/10.1155/2014/752394

    Article  Google Scholar 

  127. Ajil AH (2019) A study of the characterization of CdS/PMMA nanocomposite thin film. Iraqi J Phys 14:191–197

    Article  Google Scholar 

  128. Aziz SB, Abdulwahid RT, Rsaul HA, Ahmed HM (2016) In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. J Mater Sci Mater Electron 27:4163–4171. https://doi.org/10.1007/s10854-016-4278-y

    Article  CAS  Google Scholar 

  129. Soni G, Srivastava S, Soni P et al (2018) Effect of temperature on optical properties of PMMA/SiO2 composite thin film. AIP Conf Proc. https://doi.org/10.1063/1.5032959

    Article  Google Scholar 

  130. Mohd Abdah MAA, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibers for high-performance supercapacitors. Mater Des 186:108199. https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  131. Harb SV, Trentin A, de Souza TAC et al (2020) Effective corrosion protection by eco-friendly self-healing PMMA-cerium oxide coatings. Chem Eng J 383:123219. https://doi.org/10.1016/j.cej.2019.123219

    Article  CAS  Google Scholar 

  132. Siva Prasanna SRV, Balaji K, Pandey S, Rana S (2018) Metal Oxide Based Nanomaterials and Their Polymer Nanocomposites. Elsevier Inc.

  133. Kim CS, Randow C, Sano T (2015) Hybrid and hierarchical composite materials

  134. Sarkar S, Guibal E, Quignard F, SenGupta AK (2012) Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. J Nanoparticle Res. https://doi.org/10.1007/s11051-011-0715-2

    Article  Google Scholar 

  135. Nakamura N, Kim J, Yamamoto K et al (2017) Organic light-emitting diode lighting with high out-coupling and reliability: Application of transparent amorphous ZnO–SiO2 semiconductor thick film. Org Electron 51:103–110. https://doi.org/10.1016/j.orgel.2017.09.016

    Article  CAS  Google Scholar 

  136. Lee SM, Choi CS, Choi KC, Lee HC (2012) Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes. Org Electron 13:1654–1659. https://doi.org/10.1016/j.orgel.2012.05.014

    Article  CAS  Google Scholar 

  137. Jennings JR, Ghicov A, Peter LM et al (2008) Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J Am Chem Soc 130:13364–13372. https://doi.org/10.1021/ja804852z

    Article  CAS  Google Scholar 

  138. Pan J, Li X, Zhao Q et al (2015) Construction of Mn0.5Zn0.5Fe2O4 modified TiO2 nanotube array nanocomposite electrodes and their photo electrocatalytic performance in the degradation of 2,4-DCP. J Mater Chem C 3:6025–6034. https://doi.org/10.1039/c5tc01008j

    Article  CAS  Google Scholar 

  139. Kandulna R, Choudhary RB, Singh R, Purty B (2018) PMMA–TiO2 based polymeric nanocomposite material for electron transport layer in OLED application. J Mater Sci Mater Electron 29:5893–5907. https://doi.org/10.1007/s10854-018-8562-x

    Article  CAS  Google Scholar 

  140. Schneider J, Matsuoka M, Takeuchi M, et al. (2014) Schneider et al. - 2014 - Understanding TiO 2 Photocatalysis Mechanisms and Materials(2).pdf. Chem Rev 114:9919−9986

  141. Rahman KH, Kar AK (2020) Titanium-di-oxide (TiO2) concentration-dependent optical and morphological properties of PAni-TiO2 nanocomposite. Mater Sci Semicond Process. https://doi.org/10.1016/j.mssp.2019.104745

    Article  Google Scholar 

  142. Gad MM, Abualsaud R (2019) Behavior of PMMA denture base materials containing titanium dioxide nanoparticles: A literature review. Int J Biomater. https://doi.org/10.1155/2019/6190610

    Article  Google Scholar 

  143. Eisa MH (2020) Effects of beta-ray irradiation on optical properties of PbO thin films. Mater Sci Semicond Process 110:104966. https://doi.org/10.1016/j.mssp.2020.104966

    Article  CAS  Google Scholar 

  144. El-Gamal S, Elsayed M (2020) Synthesis, structural, thermal, mechanical, and nano-scale free volume properties of novel PbO/PVC/PMMA nanocomposites. Polymer (Guildf) 206:122911. https://doi.org/10.1016/j.polymer.2020.122911

    Article  CAS  Google Scholar 

  145. Jin J, Qi R, Su Y et al (2013) Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran Polym J 22:767–774

    Article  CAS  Google Scholar 

  146. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  147. Obaid ZS (2017) Physical Properties of PMMA / ZnO Composite Material, Ph.D. dissertations, University Al-Narhrain.

  148. Rabee BH, Al-kareem BA (2016) Study of Optical Properties of (PMMA-CuO) Nanocomposites. Int J Sci Res 5:879–883

    Google Scholar 

  149. Elawam SA, Morsi WM, Abou-Shady HM, Guirguis OW (2016) Optical properties study of PMMA/PbO (NPS) composites films. MSAIJ 14(12):771–483

    Google Scholar 

  150. Wang Z, Dong F, Shen B et al (2016) Electronic and optical properties of novel carbon allotropes. Carbon N Y 101:77–85. https://doi.org/10.1016/j.carbon.2016.01.078

    Article  CAS  Google Scholar 

  151. Niu Z, Zhang Y, Zhang Y et al (2020) Enhanced electrochemical performance of three-dimensional graphene/carbon nanotube composite for supercapacitor application. J Alloys Compd 820:153114. https://doi.org/10.1016/j.jallcom.2019.153114

    Article  CAS  Google Scholar 

  152. Alhosiny N, Badawi A, Abdallah S (2013) The Effects of CNTs Types on The Structural and Electrical Properties of CNTs / PMMA Nanocomposite Films. Int J Eng Technol 13:77–79

    Google Scholar 

  153. Pawar D, Kanawade R, Kumar A et al (2020) High-performance dual cavity-interferometric volatile gas sensor utilizing Graphene/PMMA nanocomposite. Sensors Actuators, B Chem. https://doi.org/10.1016/j.snb.2020.127921

    Article  Google Scholar 

  154. Ravirajan P, Peiró AM, Nazeeruddin MK et al (2006) Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J Phys Chem B 110:7635–7639. https://doi.org/10.1021/jp0571372

    Article  CAS  Google Scholar 

  155. Choudhary RB, Verma A (2019) Augmented structural, optical, and electrical properties of CdS decorated PANI/rGO nanohybrids. Opt Mater (Amst) 96:109310. https://doi.org/10.1016/j.optmat.2019.109310

    Article  CAS  Google Scholar 

  156. Kausar A (2020) Emerging trends in Poly (methyl methacrylate) containing carbonaceous reinforcements—Carbon nanotube, carbon black, and carbon fiber. J Plast Film Sheeting 36:409–429. https://doi.org/10.1177/8756087920917177

    Article  CAS  Google Scholar 

  157. Al-Osaimi J, Al-Hosiny N, Abdallah S, Badawi A (2014) Characterization of optical, thermal, and electrical properties of SWCNTs/PMMA nanocomposite films. Iran Polym J 23:437–443

    Article  CAS  Google Scholar 

  158. Aziz SB, Abdullah OG, Brza MA et al (2019) Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys 15:102776. https://doi.org/10.1016/j.rinp.2019.102776

    Article  Google Scholar 

  159. Hirlekar R, Yamagar M, Garse H et al (2009) Carbon nanotubes and its applications: A review. Asian J Pharm Clin Res 2:17–27

    CAS  Google Scholar 

  160. Zainal NFA, Azira AA, Nik SF, Rusop M (2009) The Electrical and Optical Properties of PMMA/MWCNTs Nanocomposite Thin Films. AIP Conf Proc 1136:750–754. https://doi.org/10.1063/1.3160249

    Article  CAS  Google Scholar 

  161. Chung DDL (2002) Review: Graphite. J Mater Sci 37:1475–1489. https://doi.org/10.1023/A:1014915307738

    Article  CAS  Google Scholar 

  162. Kleshch VI, Obraztsov AN, Obraztsova ED (2010) Electromechanical self-oscillations of carbon nanotube field emitter. Carbon N Y 48:3895–3900. https://doi.org/10.1016/j.carbon.2010.06.055

    Article  CAS  Google Scholar 

  163. Gonalves G, Marques PAAP, Barros-Timmons A et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20:9927–9934. https://doi.org/10.1039/c0jm01674h

    Article  CAS  Google Scholar 

  164. Zubair M, Mustafa M, Ali A et al (2015) Improvement of solution-based conjugate polymer organic light-emitting diode by ZnO–graphene quantum dots. J Mater Sci Mater Electron 26:3344–3351. https://doi.org/10.1007/s10854-015-2837-2

    Article  CAS  Google Scholar 

  165. Yeum JH, Deng Y (2005) Synthesis of high molecular weight poly(methyl methacrylate) Microspheres by suspension polymerization in the presence of silver nanoparticles. Colloid Polym Sci 283:1172–1179. https://doi.org/10.1007/s00396-005-1300-y

    Article  CAS  Google Scholar 

  166. Kuila T, Bose S, Khanra P et al (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos Part A Appl Sci Manuf 42:1856–1861. https://doi.org/10.1016/j.compositesa.2011.08.014

    Article  CAS  Google Scholar 

  167. Feng J, Athanassiou A, Bonaccorso F, Fragouli D (2018) Enhanced electrical conductivity of Poly (Methyl methacrylate) filled with Graphene and in situ synthesized gold nanoparticles. Nano Futur 2:25003. https://doi.org/10.1088/2399-1984/aabf0c

    Article  CAS  Google Scholar 

  168. Sharma R, Mahto V, Vuthaluru H (2019) Synthesis of PMMA/modified graphene oxide nanocomposite pour point depressant and its effect on the flow properties of Indian waxy crude oil. Fuel 235:1245–1259. https://doi.org/10.1016/j.fuel.2018.08.125

    Article  CAS  Google Scholar 

  169. Soni G, Jangir RK (2021) Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik (Stuttg) 226:165915. https://doi.org/10.1016/j.ijleo.2020.165915

    Article  CAS  Google Scholar 

  170. Shinar J, Savvateev V (2004) Devices introduction to an organic light-emitting device, Springer, New York pp-1–41.

  171. Martín-Palma RJ, Lakhtakia A (2013) Vapor-Deposition Techniques. Elsevier Inc.

  172. Kumar B, Kaushik BK, Negi YS (2014) Organic thin-film transistors: Structures, models, materials, fabrication, and applications: A review. Polym Rev 54:33–111. https://doi.org/10.1080/15583724.2013.848455

    Article  CAS  Google Scholar 

  173. Yin ZP, Huang YA, Bin BuN et al (2010) Inkjet printing for flexible electronics: Materials, processes and equipment. Chinese Sci Bull 55:3383–3407. https://doi.org/10.1007/s11434-010-3251-y

    Article  Google Scholar 

  174. Irzaman SH, Siskandar R et al (2017) Modified Spin Coating Method for Coating and Fabricating Ferroelectric Thin Films as Sensors and Solar Cells. Thin Film Process - Artifacts Surf Phenom Technol Facet. https://doi.org/10.5772/66815

    Article  Google Scholar 

  175. Tyona MD (2013) A theoretical study on spin coating technique. Adv Mater Res 2:195–208

    Article  Google Scholar 

  176. Rabbani M, Bappy MH, Abu M et al (2013) A review of the fabrication method for OLED. IEE. https://doi.org/10.1109/ICIEV.2013.6572656

    Article  Google Scholar 

  177. Shaban M, Attia GF, Basyooni MA, Hamdy H (2014) Synthesis and characterization of tin oxide thin film, the effect of annealing on multilayer film. J Mod Trends Phys R 14:90–99

    Google Scholar 

  178. Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: A review. Indian J Phys 83:493–502. https://doi.org/10.1007/s12648-009-0009-z

    Article  CAS  Google Scholar 

  179. Sandström A (2013) Design and Fabrication of Light-Emitting Electrochemical Cells, Ph.D. dissertation, university umea.

  180. Hang CCHI (2005) Fabrication and Characterization of Microcavity Organic Light-Emitting Diodes

  181. Ho YH, Chen KY, Liu SW et al (2011) Transparent and conductive metallic electrodes fabricated by using nanosphere lithography. Org Electron 12:961–965. https://doi.org/10.1016/j.orgel.2011.03.019

    Article  CAS  Google Scholar 

  182. Lan L, Zou J, Jiang C et al (2017) Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Front Optoelectron 10:329–352. https://doi.org/10.1007/s12200-017-0765-x

    Article  Google Scholar 

  183. Alamán J, Alicante R, Peña JI, Sánchez-Somolinos C (2016) Inkjet printing of functional materials for optical and photonic applications. Materials (Basel). https://doi.org/10.3390/ma9110910

    Article  Google Scholar 

  184. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22:673–685. https://doi.org/10.1002/adma.200901141

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director IIT(ISM), Dhanbad, for providing the research opportunities and continuously supporting them by providing the institute infrastructure and fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilash Choudhary.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this review paper.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauri, J., Choudhary, R.B. & Mandal, G. Recent advances in efficient emissive materials-based OLED applications: a review. J Mater Sci 56, 18837–18866 (2021). https://doi.org/10.1007/s10853-021-06503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06503-y

Navigation