Skip to main content
Log in

Visible light-curable polymers for biomedical applications

  • Reviews
  • Special Issue Recent Research Progress of Biomedical Polymers
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Photocurable systems, which offer advantages such as microfabrication and in situ fabrication, have been widely used as dental restorative materials. Because the visible light-curable (VLC) system causes no biological damage, it is popular as a dental material and is being investigated by many researchers for other medical applications. Here, the principle of the VLC system is explained and recent progress in key components including photoinitiators, monomers, macromers, and prepolymers is discussed. Finally, biomedical applications for drug delivery and soft tissue engineering are reviewed. Considering the recent development of VLC systems, its importance in the field of medical applications is expected to continue to increase in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khademhosseini A, Langer R. Nanobiotechnology-Drug delivery and tissue engineering. Chem Eng Prog, 2006, 102: 38–42

    CAS  Google Scholar 

  2. Langer R. Biomaterials for drug delivery and tissue engineering. Mrs Bull, 2006, 31: 477–485

    Article  CAS  Google Scholar 

  3. Goldberg M, Langer R, Jia XQ. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomat Sci-Polym E, 2007, 18: 241–268

    Article  CAS  Google Scholar 

  4. Shi JJ, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett, 2010, 10: 3223–3230

    Article  CAS  Google Scholar 

  5. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci, 2001, 26: 535–576

    Article  CAS  Google Scholar 

  6. Culbertson BM. New polymeric materials for use in glass-ionomer cements. J Dent, 2006, 34: 556–565

    Article  CAS  Google Scholar 

  7. Kramer N, Lohbauer U, Garcia-Godoy F, Frankenberger R. Light curing of resin-based composites in the LED era. Am J Dent, 2008, 21: 135–142

    Google Scholar 

  8. Cramer NB, Stansbury JW, Bowman CN. Recent advances and developments in composite dental restorative materials. J Dent Res, 2011, 90: 402–416

    Article  CAS  Google Scholar 

  9. Leprince JG, Palin WM, Hadis MA, Devaux J, Leloup G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent Mater, 2013, 29: 139–156

    Article  CAS  Google Scholar 

  10. Hoyle CE. Photocurable coatings. Acs Sym Ser, 1990, 417: 1–16

    Article  CAS  Google Scholar 

  11. Lub J, Broer DJ, van de Witte P. Colourful photo-curable coatings for application in the electro-optical industry. Prog Org Coat, 2002, 45: 211–217

    Article  CAS  Google Scholar 

  12. Carter KR. Photocurable resists for imprint lithography. Abstr Pap Am Chem Soc, 2005, 229: U1119

    Google Scholar 

  13. Hirasawa T, Taniguchi J, Ohtaguchi M, Sakai N. Photo-curable resins and evaluation methods for UV-nanoimprint lithography. Electr Commun Jpn, 2009, 92: 51–56

    Article  Google Scholar 

  14. Taniguchi J, Unno N, Kamiya Y, Sakai N, Ohsaki T. Three-dimensional nanoimprint lithography using photocurable resins. Plast Rubber Compos, 2010, 39: 327–331

    Article  CAS  Google Scholar 

  15. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Author information. Mutations of the BRAF gene in human cancer. Nature, 2002, 417: 949–954

    Article  CAS  Google Scholar 

  16. Lindahl T. Instability and decay of the primary structure of DNA. Nature, 1993, 362: 709–715

    Article  CAS  Google Scholar 

  17. Jakubiak J, Rabek JF. Photoinitiators for visible light polymerization. Polimery-W, 1999, 44: 447–461

    CAS  Google Scholar 

  18. Allen NS. Photoinitiators for UV and visible curing of coatings: mechanisms and properties. J Photoch Photobio A, 1996, 100: 101–107

    Article  CAS  Google Scholar 

  19. Gomez ML, Previtali CM, Montejano HA. Two- and three-component visible light photoinitiating systems for radical polymerization based on onium salts: an overview of mechanistic and laser flash photolysis studies. Int J Photoenergy, 2012, Article ID 260728

    Google Scholar 

  20. Bibaut-Renauld C, Burget D, Fouassier JP, Varelas CG, Thomatos J, Tsagaropoulos G, Ryrfors LO, Karlsson OJ. Use of alpha-diketones as visible photoinitiators for the photocrosslinking of waterborne latex paints. J Polym Sci Pol Chem, 2002, 40: 3171–3181

    Article  CAS  Google Scholar 

  21. Jakubiak J, Sionkowska A, Linden LA, Rabek JF. Isothermal photo differential scanning calorimetry-crosslinking polymerization of multifunctional monomers in presence of visible light photoinitiators. J Therm Anal Calorim, 2001, 65: 435–443

    Article  CAS  Google Scholar 

  22. Ghaemy M, Bekhradnia S. Thermal and photocuring of an acrylate-based coating resin reinforced with nanosilica particles. J Coat Technol Res, 2012, 9: 569–578

    Article  CAS  Google Scholar 

  23. Angiolini L, Caretti D, Salatelli E. Synthesis and photoinitiation activity of radical polymeric photoinitiators bearing side-chain camphorquinone moieties. Macromol Chem Phys, 2000, 201: 2646–2653

    Article  CAS  Google Scholar 

  24. Park YJ, Chae KH, Rawls HR. Development of a new photoinitiation system for dental light-cure composite resins. Dent Mater, 1999, 15: 120–127

    Article  CAS  Google Scholar 

  25. Arikawa H, Takahashi H, Kanie T, Ban S. Effect of various visible light photoinitiators on the polymerization and color of light-activated resins. Dent Mater J, 2009, 28: 454–460

    Article  CAS  Google Scholar 

  26. Sun GJ, Chae KH. Properties of 2,3-butanedione and 1-phenyl-1,2-propanedione as new photosensitizers for visible light cured dental resin composites. Polymer, 2000, 41: 6205–6212

    Article  CAS  Google Scholar 

  27. Ikemura K, Endo T. A review of the development of radical photopolymerization initiators used for designing light-curing dental adhesives and resin composites. Dent Mater J, 2010, 29: 481–501

    Article  CAS  Google Scholar 

  28. Ganster B, Fischer UK, Moszner N, Liska R. New photocleavable structures. Diacylgermane-based photoinitiators for visible light curing. Macromolecules, 2008, 41: 2394–2400

    Article  CAS  Google Scholar 

  29. Moszner N, Fischer UK, Ganster B, Liska R, Rheinberger V. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dent Mater, 2008, 24: 901–907

    Article  CAS  Google Scholar 

  30. Rivarola CR, Biasutti MA, Barbero CA. A visible light photoinitiator system to produce acrylamide based smart hydrogels: Ru(bpy)(3+2) as photopolymerization initiator and molecular probe of hydrogel microenvironments. Polymer, 2009, 50: 3145–3152

    Article  CAS  Google Scholar 

  31. Gomez ML, Fasce DP, Williams RJ, Erra-Balsells R, Fatema MK, Nonami H. Silsesquioxane functionalized with methacrylate and amine groups as a crosslinker/co-initiator for the synthesis of hydrogels by visible-light photopolymerization. Polymer, 2008, 49: 3648–3653

    Article  CAS  Google Scholar 

  32. Nie J, Bowman CN. Synthesis and photopolymerization of N,N′-di-methyl-N,N′-di(methacryloxy ethyl)-1,6-hexanediamine as a polymerizable amine coinitiator for dental restorations. Biomaterials, 2002, 23: 1221–1226

    Article  CAS  Google Scholar 

  33. Ahn KD, Han DK, Lee SH, Lee CW. New aromatic tert-amines for application as photoinitiator components in photocurable dental materials. Macromol Chem Phys, 2003, 204: 1628–1635

    Article  CAS  Google Scholar 

  34. Lee BP, Huang K, Nunalee FN, Shull KR, Messersmith PB. Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. J Biomat Sci-Polym E, 2004, 15: 449–464

    Article  CAS  Google Scholar 

  35. Ikemura K, Endo T. Effects of a new 4-acryloxyethyltrimellitic acid in a visible light-cured dental adhesive on adhesion and polymerization reactivity. J Appl Polym Sci, 1998, 69: 1057–1069

    Article  CAS  Google Scholar 

  36. Lee JK, Kim JY, Lim BS. Dynamic mechanical properties of a visible light curable urethane dimethacrylate based dental resin. Polym J, 2003, 35: 890–895

    Article  CAS  Google Scholar 

  37. Paczkowska B, Strzelec S, Jedrzejewska B, Linden LA, Paczkowski J. Photochemical preparation of polymer-clay composites. Appl Clay Sci, 2004, 25: 221–227

    Article  CAS  Google Scholar 

  38. Dotrong MH, Johnston WM, Culbertson BM. Visible light-curable N-methacryloyl-glutamic acid modified polyelectrolytes for use in dental applications. J Macromol Sci Pure, 2000, 37: 911–926

    Article  Google Scholar 

  39. Nie J, Linden LA, Rabek JF, Ekstrand J. Photocuring of mono- and di-functional (meth)acrylates with tris[2-(acryloyloxy)ethyl]isocyanurate. Eur Polym J, 1999, 35: 1491–1500

    Article  CAS  Google Scholar 

  40. Sharifi S, Mirzadeh H, Imani M, Atai M, Ziaee F. Photopolymerization and shrinkage kinetics of in situ crosslinkable N-vinyl-pyrrolidone/poly(epsilon-caprolactone fumarate) networks. J Biomed Mater Res A, 2008, 84A: 545–556

    Article  CAS  Google Scholar 

  41. Xie D, Culbertson BM, Johnston WM. Formulation of visible light-curable glass-ionomer cements containing N-vinylpyrrolidone. J Macromol Sci Pure, 1998, A35: 1631–1650

    Article  CAS  Google Scholar 

  42. Papavasiliou G, Songprawat P, Perez-Luna V, Hammes E, Morris M, Chiu YC, Brey E. Three-dimensional patterning of poly(ethylene glycol) hydrogels through surface-initiated photopolymerization. Tissue Eng Part C-Me, 2008, 14: 129–140

    Article  CAS  Google Scholar 

  43. Zhang HB, Wang L, Song L, Niu GG, Cao H, Wang GJ, Yang H, Zhu SQ. Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. J Appl Polym Sci, 2011, 121: 531–540

    Article  CAS  Google Scholar 

  44. Burdick JA, Philpott LM, Anseth KS. Synthesis and characterization of tetrafunctional lactic acid oligomers: a potential in situ forming degradable orthopaedic biomaterial. J Polym Sci Pol Chem, 2001, 39: 683–692

    Article  CAS  Google Scholar 

  45. Zhang K, Simon CG, Washburn NR, Antonucci JM, Lin-Gibson S. In situ formation of blends by photopolymerization of poly(ethylene glycol) dimethacrylate and polylactide. Biomacromolecules, 2005, 6: 1615–1622

    Article  CAS  Google Scholar 

  46. Culbertson BM, Wan QC, Tong YH. Preparation and evaluation of visible light-cured multi-methacrylates for dental composites. J Macromol Sci Pure, 1997, A34: 2405–2421

    Article  CAS  Google Scholar 

  47. Tiba A, Culbertson BM. Development of visible light-cured multi-methacrylates for dental restorative materials. J Macromol Sci Pure, 1999, A36: 489–506

    Article  CAS  Google Scholar 

  48. Nie J, Rabek JF, Linden LA. Photopolymerization of poly(melamine-co-formaldehyde) acrylate for dental restorative resins. Polym Int, 1999, 48: 129–136

    Article  CAS  Google Scholar 

  49. Kim SH, Chu CC. Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fiber Polym, 2009, 10: 14–20

    Article  CAS  Google Scholar 

  50. Kamoun EA, Menzel H. HES-HEMA nanocomposite polymer hydrogels: swelling behavior and characterization. J Polym Res, 2012, 19: 9851

    Article  CAS  Google Scholar 

  51. Chen CY, Huang CK, Lin SP, Han JL, Hsieh KH, Lin CP. Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO(2) composites as dental restorative materials. Compos Sci Technol, 2008, 68: 2811–2817

    Article  CAS  Google Scholar 

  52. Arcis RW, Lopez-Macipe A, Toledano M, Osorio E, Rodriguez-Clemente R, Murtra J, Fanovich MA, Pascual CD. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater, 2002, 18: 49–57

    Article  CAS  Google Scholar 

  53. Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light. Adv Mater, 2012, 24: 3975–3980

    Article  CAS  Google Scholar 

  54. Yu Y, Zhang H, Zhang CH, Cui SX. Facile fabrication of robust multilayer films: visible light-triggered chemical cross-linking by the catalysis of a ruthenium(II) complex. Chem Commun, 2011, 47: 929–931

    Article  CAS  Google Scholar 

  55. Klaasen RP, van der Leeuw RPC. Fast drying cobalt-free high solids alkyd paints. Prog Org Coat, 2006, 55: 149–153

    Article  CAS  Google Scholar 

  56. Tajima Y, Tezuka Y, Ishii T, Takeuchi K. Application of a furan-containing polymer/fullerene system to photolithography. Polym J, 1997, 29: 1016–1019

    Article  CAS  Google Scholar 

  57. Son TI, Sakuragi M, Takahashi S, Obuse S, Kang J, Fujishiro M, Matsushita H, Gong J, Shimizu S, Tajima Y, Yoshida Y, Suzuki K, Yamamoto T, Nakamura M, Ito Y. Visible light-induced crosslinkable gelatin. Acta Biomater, 2010, 6: 4005–4010

    Article  CAS  Google Scholar 

  58. Kim KI, Na HN, Ito Y, Son TI. Synthesis of visible light-induced cross-linkable chitosan as an anti-adhesive agent. Macromol Res, 2011, 19: 216–220

    Article  CAS  Google Scholar 

  59. Seo SY, Park SH, Lee HJ, Na HN, Kim KI, Han DK, Lee JK, Ito Y, Son TI. Visible light-induced photocurable (forming a film) low molecular weight chitosan derivatives for biomedical applications: synthesis, characterization and in vitro biocompatibility. J Ind Eng Chem, 2012, 18: 1258–1262

    Article  CAS  Google Scholar 

  60. Na HN, Park SH, Kim KI, Kim MK, Son TI. Photocurable O-carboxymethyl chitosan derivatives for biomedical applications: synthesis, in vitro biocompatibility, and their wound healing effects. Macromol Res, 2012, 20: 1144–1149

    Article  CAS  Google Scholar 

  61. Park SH, Seo SY, Na HN, Kim KI, Lee JW, Woo HD, Lee JH, Seok HK, Lee JG, Chung SI, Chung KH, Han DK, Ito Y, Jang EC, Son TI. Preparation of a visible light-reactive low molecular-O-carboxymethyl chitosan (LM-O-CMCS) derivative and applicability as an anti-adhesion agent. Macromol Res, 2011, 19: 921–927

    Article  CAS  Google Scholar 

  62. Park SH, Seo SY, Lee HJ, Na HN, Lee JW, Woo HD, Son TI. Preparation of Furfuryl-fish gelatin (F-f.gel) cured using visible-light and its application as an anti-adhesion agent. Macromol Res, 2012, 20: 842–846

    Article  CAS  Google Scholar 

  63. Bose S, Bogner RH. Solvent less visible light-curable coating: I. Critical formulation and processing parameters. Int J Pharmaceut, 2010, 393: 32–40

    Article  CAS  Google Scholar 

  64. Bose S, Bogner RH. Solvent less visible light-curable coating: II. Drug release, mechanical strength and photostability. Int J Pharmaceut, 2010, 393: 41–47

    Article  CAS  Google Scholar 

  65. Liu JW, Nie J, Zhao YF, He Y. Preparation and properties of different photoresponsive hydrogels modulated with UV and visible light irradiation. J Photoch Photobio A, 2010, 211: 20–25

    Article  CAS  Google Scholar 

  66. Shaker MA, Dore JJE, Younes HM. Synthesis, characterization and cytocompatibility of a poly(diol-tricarballylate) visible light photo-cross-linked biodegradable elastomer. J Biomat Sci-Polym E, 2010, 21: 507–528

    Article  CAS  Google Scholar 

  67. Shaker MA, Daneshtalab N, Dore JJE, Younes HM. Biocompatibility and biodegradability of implantable drug delivery matrices based on novel poly(decane-co-tricarballylate) photocured elastomers. J Bioact Compat Pol, 2012, 27: 78–94

    Article  CAS  Google Scholar 

  68. Hakala RA, Korhonen H, Meretoja VV, Seppala JV. Photo-cross-linked biodegradable poly(ester anhydride) networks prepared from alkenylsuccinic anhydride functionalized poly(epsilon-caprolactone) precursors. Biomacromolecules, 2011, 12: 2806–2814

    Article  CAS  Google Scholar 

  69. Kamoun EA, Menzel H. Crosslinking behavior of dextran modified with hydroxyethyl methacrylate upon irradiation with visible light-effect of concentration, coinitiator type, and solvent. J Appl Polym Sci, 2010, 117: 3128–3138

    CAS  Google Scholar 

  70. Nakayama Y, Kim JY, Nishi S, Ueno H, Matsuda T. Development of high-performance stent: gelatinous photogel-coated stent that permits drug delivery and gene transfer. J Biomed Mater Res, 2001, 57: 559–566

    Article  CAS  Google Scholar 

  71. Liu JZ, Zhang L, Lam JWY, Jim CKW, Yue YA, Deng R, Hong YN, Qin AJ, Sung HHY, Williams ID, Jia GC, Tang BZ. Exploration of effective catalysts for diyne polycyclotrimerization, synthesis of an ester-functionalized hyperbranched polyphenylene, and demonstration of its utility as a molecular container with implication for controlled drug delivery. Macromolecules, 2009, 42: 7367–7378

    Article  CAS  Google Scholar 

  72. Heo Y, Lee HJ, Kim EH, Kim MK, Ito Y, Son TI. Regeneration effect of visible-light curing furfuryl alginate compound by release of epidermal growth factor for wound healing application. J Appl Polym Sci, 2013, DOI: 10.1002/app.40113

    Google Scholar 

  73. Elvin CM, Carr AG, Huson MG, Maxwell JM, Pearson RD, Vuocolo T, Liyou NE, Wong DC, Merritt DJ, Dixon NE. Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 2005, 437: 999–1002

    Article  CAS  Google Scholar 

  74. Elvin CM, Brownlee AG, Huson MG, Tebb TA, Kim M, Lyons RE, Vuocolo T, Liyou NE, Hughes TC, Ramshaw JA, Werkmeister JA. The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials, 2009, 30: 2059–2065

    Article  CAS  Google Scholar 

  75. Elvin CM, Danon SJ, Brownlee AG, White JF, Hickey M, Liyou NE, Edwards GA, Ramshaw JA, Werkmeister JA. Evaluation of photo-cross-linked fibrinogen as a rapid and strong tissue adhesive. J Biomed Mater Res A, 2010, 93A: 687–695

    CAS  Google Scholar 

  76. Elvin CM, Vuocolo T, Brownlee AG, Sando L, Huson MG, Liyou NE, Stockwell PR, Lyons RE, Kim M, Edwards GA, Johnson G, McFarland GA, Ramshaw JA, Werkmeister JA. A highly elastic tissue sealant based on photopolymerised gelatin. Biomaterials, 2010, 31: 8323–8331

    Article  CAS  Google Scholar 

  77. Sando L, Kim M, Colgrave ML, Ramshaw JAM, Werkmeister JA, Elvin CM. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J Biomed Mater Res A, 2010, 95A: 901–911

    Article  CAS  Google Scholar 

  78. Sando L, Danon S, Brownlee G, McCulloch RJ, Ramshaw JAM, Elvin CM, Werkmeister JA. Photochemically crosslinked matrices of gelatin and fibrinogen promote rapid cell proliferation. J Tissue Eng Regen M, 2011, 5: 337–346

    Article  CAS  Google Scholar 

  79. Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Nairn KM, Hill AJ. The effect of hydration on molecular chain mobility and the viscoelastic behavior of resilin-mimetic protein-based hydrogels. Biomaterials, 2011, 32: 8462–8473

    Article  CAS  Google Scholar 

  80. Vashi AV, Werkmeister JA, Vuocolo T, Elvin CM, Ramshaw JAM. Stabilization of collagen tissues by photocrosslinking. J Biomed Mater Res A, 2012, 100A: 2239–2243

    CAS  Google Scholar 

  81. Vuocolo T, Haddad R, Edwards GA, Lyons RE, Liyou NE, Werkmeister JA, Ramshaw JA, Elvin CM. A highly elastic and adhesive gelatin tissue sealant for gastrointestinal surgery and colon anastomosis. J Gastrointest Surg, 2012, 16: 744–752

    Article  Google Scholar 

  82. Bahney CS, Lujan TJ, Hsu CW, Bottlang M, West JL, Johnstone B. Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. Eur Cells Mater, 2011, 22: 43–55

    CAS  Google Scholar 

  83. Mishra S, Scarano FJ, Calvert P. Entrapment of Saccharomyces cerevisiae and 3T3 fibroblast cells into blue light cured hydrogels. J Biomed Mater Res A, 2012, 100A: 2829–2838

    Article  CAS  Google Scholar 

  84. Turturro MV, Papavasiliou G. Generation of mechanical and biofunctional gradients in PEG diacrylate hydrogels by perfusion-based frontal photopolymerization. J Biomat Sci-Polym E, 2012, 23: 917–939

    Article  CAS  Google Scholar 

  85. Di Biase M, Saunders RE, Tirelli N, Derby B. Inkjet printing and cell seeding thermoreversible photocurable gel structures. Soft Matter, 2011, 7: 2639–2646

    Article  CAS  Google Scholar 

  86. Seck TM, Melchels FPW, Feijen J, Grijpma DW. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(d,l-lactide)-based resins. J Control Release, 2010, 148: 34–41

    Article  CAS  Google Scholar 

  87. Davis KA, Burdick JA, Anseth KS. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 2003, 24: 2485–2495

    Article  CAS  Google Scholar 

  88. Sontjens SHM, Nettles DL, Carnahan MA, Setton LA, Grinstaff MW. Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules, 2006, 7: 310–316

    Article  CAS  Google Scholar 

  89. Matsuda T, Magoshi T. Preparation of vinylated polysaccharides and photofabrication of tubular scaffolds as potential use in tissue engineering. Biomacromolecules, 2002, 3: 942–950

    Article  CAS  Google Scholar 

  90. Hu JL, Hou YP, Park H, Choi B, Hou SY, Chung A, Lee M. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater, 2012, 8: 1730–1738

    Article  CAS  Google Scholar 

  91. Park H, Choi B, Hu JL, Lee M. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater, 2013, 9: 4779–4786

    Article  CAS  Google Scholar 

  92. Brinkman WT, Nagapudi K, Thomas BS, Chaikof EL. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function. Biomacromolecules, 2003, 4: 890–895

    Article  CAS  Google Scholar 

  93. Hoshikawa A, Nakayama Y, Matsuda T, Oda H, Nakamura K, Mabuchi K. Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Eng, 2006, 12: 2333–2341

    Article  CAS  Google Scholar 

  94. Luebke KJ, Carter DE, Garner HR, Brown KC. Patterning adhesion of mammalian cells with visible light, tris(bipyridyl)ruthenium(II) chloride, and a digital micromirror array. J Biomed Mater Res A, 2004, 68A: 696–703

    Article  CAS  Google Scholar 

  95. Iosin M, Stephan O, Astilean S, Dupperay A, Baldeck PL. Microstructuration of protein matrices by laser-induced photochemistry. J Optoelectron Adv M, 2007, 9: 716–720

    CAS  Google Scholar 

  96. Ibusuki S, Halbesma GJ, Randolph MA, Redmond RW, Kochevar IE, Gill TJ. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering. Tissue Eng, 2007, 13: 1995–2001

    Article  CAS  Google Scholar 

  97. Lee DA, Salih V, Stockton EF, Stanton JS, Bentley G. Effect of normal synovial fluid on the metabolism of articular chondrocytes in vitro. Clin Orthop Relat Res, 1997, 342: 228–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Ito, Y. Visible light-curable polymers for biomedical applications. Sci. China Chem. 57, 510–521 (2014). https://doi.org/10.1007/s11426-014-5069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-014-5069-z

Keywords

Navigation