Skip to main content
Log in

Sharp heat kernel bounds and entropy in metric measure spaces

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

We establish the sharp upper and lower bounds of Gaussian type for the heat kernel in the metric measure space satisfying the RCD(0, N) (equivalently, RCD* (0, N)) condition with N ϵ \ {1} and having the maximum volume growth, and then show its application on the large-time asymptotics of the heat kernel, sharp bounds on the (minimal) Green function, and above all, the large-time asymptotics of the Perelman entropy and the Nash entropy, where for the former the monotonicity of the Perelman entropy is proved. The results generalize the corresponding ones in the Riemannian manifolds, and some of them appear more explicit and sharper than the ones in metric measure spaces obtained recently by Jiang et al. (2016).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L, Gigli N, Mondino A, et al. Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure. Trans Amer Math Soc, 2015, 367: 4661–4701

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio L, Gigli N, Savaré G. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Basel: Birkhäuser Verlag, 2008

    MATH  Google Scholar 

  3. Ambrosio L, Gigli N, Savaré G. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam, 2013, 29: 969–996

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio L, Gigli N, Savaré G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195: 289–391

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio L, Gigli N, Savaré G. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math J, 2014, 163: 1405–1490

    Article  MathSciNet  MATH  Google Scholar 

  6. Ambrosio L, Gigli N, Savaré G. Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann Probab, 2015, 43: 339–404

    Article  MathSciNet  MATH  Google Scholar 

  7. Ambrosio L, Mondino A, Savaré G. On the Bakry-Émery condition, the gradient estimates and the Local-to-Global property of RCD*(K, N) metric measure spaces. J Geom Anal, 2016, 26: 24–56

    Article  MathSciNet  MATH  Google Scholar 

  8. Bacher K, Sturm K-T. Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J Funct Anal, 2010, 259: 28–56

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakry D, Emery M. Diffusions Hypercontractives. Berlin: Springer, 1985

    Book  MATH  Google Scholar 

  10. Baudoin F, Garofalo N. Perelman’s entropy and doubling property on Riemannian manifolds. J Geom Anal, 2011, 21: 1119–1131

    Article  MathSciNet  MATH  Google Scholar 

  11. Bouleau N, Hirsch F. Dirichlet Forms and Analysis on Wiener Spaces. Berlin-New York: Walter De Gruyter, 1991

    Book  MATH  Google Scholar 

  12. Chavel I. Riemannian Geometry—A Modern Introduction. Cambridge: Cambridge University Press, 1993

    MATH  Google Scholar 

  13. Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9: 428–517

    Article  MathSciNet  MATH  Google Scholar 

  14. Cheeger J, Yau S T. A lower bound for the heat kernel. Comm Pure Appl Math, 1981, 34: 465–480

    Article  MathSciNet  MATH  Google Scholar 

  15. Erbar M, Kuwada K, Sturm K-T. On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent Math, 2015, 201: 993–1071

    Article  MathSciNet  MATH  Google Scholar 

  16. Garofalo N, Mondino A. Li-Yau and Harnack type inequalities in RCD*(K, N) metric measure spaces. Nonlinear Anal, 2014, 95: 721–734

    Article  MathSciNet  MATH  Google Scholar 

  17. Gigli N. On the Differential Structure of Metric Measure Spaces and Applications. Providence: Amer Math Soc, 2015

    Book  MATH  Google Scholar 

  18. Grigor’yan A, Hu J. Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent Math, 2008, 174: 81–126

    Article  MathSciNet  MATH  Google Scholar 

  19. Haj lasz P, Koskela P. Sobolev meets Poincaré. C R Acad Sci Paris Ser I Math, 1995, 320: 1211–1215

    MathSciNet  MATH  Google Scholar 

  20. Jiang R J. The Li-Yau inequality and heat kernels on metric measure spaces. J Math Pures Appl (9), 2015, 104: 29–57

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang R J, Li H Q, Zhang H C. Heat kernel bounds on metric measure spaces and some applications. Potential Anal, 2016, 44: 601–627

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang R J, Zhang H C. Hamilton’s gradient estimates and a monotonicity formula for heat flows on metric measure spaces. Nonlinear Anal, 2016, 131: 32–47

    Article  MathSciNet  MATH  Google Scholar 

  23. Li P. Large time behavior of the heat equation on complete manifolds with non-negative Ricci curvature. Ann of Math (2), 1986, 124: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  24. Li P, Tam L-F, Wang J. Sharp bounds for the Green’s function and the heat kernel. Math Res Lett, 1997, 4: 589–602

    Article  MathSciNet  MATH  Google Scholar 

  25. Li P, Yau S T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156: 153–201

    Article  MathSciNet  Google Scholar 

  26. Li X D. Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry-Emery Ricci curvature. Math Ann, 2012, 353: 403–437

    Article  MathSciNet  MATH  Google Scholar 

  27. Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169: 903–991

    Article  MathSciNet  MATH  Google Scholar 

  28. Nash J. Continuity of solutions of parabolic and elliptic equations. Amer J Math, 1958, 80: 931–954

    Article  MathSciNet  MATH  Google Scholar 

  29. Ni L. The entropy formula for linear equation. J Geom Anal, 2004, 14: 87–100

    Article  MathSciNet  MATH  Google Scholar 

  30. Ni L. Addenda to “The entropy formula for linear equation”. J Geom Anal, 2004, 14: 329–334

    MATH  Google Scholar 

  31. Ni L. The large time asymptotics of the entropy. In: Complex Analysis. Trends in Mathematics. Basel: Birkhäser, 2010, 301–306

    Chapter  Google Scholar 

  32. Perelman G. The entropy formula for the Ricci flow and its geometric applications. ArXiv: 0211159, 2002

    MATH  Google Scholar 

  33. Rajala T. Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm. J Funct Anal, 2012, 263: 896–924

    Article  MathSciNet  MATH  Google Scholar 

  34. Rajala T. Local Poincaré inequalities from stable curvature conditions on metric spaces. Calc Var Partial Differential Equations, 2012, 44: 477–494

    Article  MathSciNet  MATH  Google Scholar 

  35. Shanmugalingam N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoamericana, 2000, 16: 243–279

    Article  MathSciNet  MATH  Google Scholar 

  36. Sturm K-T. Analysis on local Dirichlet spaces, I: Recurrence, conservativeness and L p-Liouville properties. J Reine Angew Math, 1994, 456: 173–196

    MathSciNet  MATH  Google Scholar 

  37. Sturm K-T. Analysis on local Dirichlet spaces, II: Upper Gaussian estimates for the fundamental solutions of parabolic equations. Osaka J Math, 1995, 32: 275–312

    MathSciNet  MATH  Google Scholar 

  38. Sturm K-T. Analysis on local Dirichlet spaces, III: The parabolic Harnack inequality. J Math Pures Appl, 1996, 75: 273–297

    MathSciNet  MATH  Google Scholar 

  39. Sturm K-T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196: 65–131

    Article  MathSciNet  MATH  Google Scholar 

  40. Sturm K-T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196: 133–177

    Article  MathSciNet  MATH  Google Scholar 

  41. Villani C. Optimal Transport, Old and New. Berlin: Springer-Verlag, 2009

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 11401403) and the Australian Research Council (Grant No. DP130101302). The author thanks Professor Bin Qian for suggesting him study the Perelman entropy in metric measure spaces, and thanks Professors Dejun Luo and Yongsheng Song for a nice discussion when the author gave a talk on this topic in the Institute of Applied Mathematics, Chinese Academy of Sciences on November 20, 2015. This work was started when the author was a research fellow in Macquarie University from October 2014 to October 2015. The author also thanks Professor Adam Sikora for his interest. Finally, the author is grateful to the anonymous referees for their careful reading of the manuscript and asking interesting questions which are helpful for the improvement of the quality of the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqian Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H. Sharp heat kernel bounds and entropy in metric measure spaces. Sci. China Math. 61, 487–510 (2018). https://doi.org/10.1007/s11425-016-0314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-016-0314-9

Keywords

MSC(2010)

Navigation